Gold Remobilization: Insights from Gold Deposits in the Archean Swayze Greenstone Belt, Abitibi Subprovince, Canada

2020 ◽  
Vol 115 (2) ◽  
pp. 241-277 ◽  
Author(s):  
Evan C.G. Hastie ◽  
Daniel J. Kontak ◽  
Bruno Lafrance

Abstract Recognizing if and how Au is remobilized, in solid, melt, or fluid state, is critical for understanding the origin of high-grade ore zones in Au deposits. When evidence for Au remobilization can be demonstrated, then primary versus secondary processes can be distinguished, resulting in a more complete understanding of Au deposit formation. To address this, samples from two Au deposits, Jerome and Kenty, in the Archean Swayze greenstone belt of northern Ontario, Canada, together with archived samples from 39 high-grade Au deposits from the Abitibi greenstone belt across Ontario and Quebec, were geochemically characterized using integrated scanning electron microscopy-energy dispersive spectroscopy and electron microprobe imaging and analyses in addition to laser ablation-inductively coupled plasma-mass spectrometry elemental mapping. These data provided the basis to develop a model for Au remobilization and upgrading of Au that is widely applicable to orogenic gold settings. Data for the Jerome deposit indicate that Au uptake into early pyrite was not due to pulsing of different fluids, but instead was predominantly controlled by S availability, whereby the oscillatory/sector zoning in pyrite resulted from the substitution of As into S sites during rapid growth due to local chemical disequilibrium. In addition, Au-bearing pyrite from both the Jerome and Kenty deposits records textures, such as porosity development coincident with the presence of native gold and accessory sulfide phases, that are strongly suggestive of coupled dissolution-reprecipitation (CDR) reactions that liberated Au and associated elements from earlier auriferous (100–5,000 ppm Au) pyrite. During the remobilization process, Au and Ag were decoupled, which resulted in (1) a change in Au/Ag ratios of 0.5 to 5 in early pyrite to ≈9 in the new native gold (900 Au fineness) and (2) incorporation of Ag into cogenetic secondary mineral phases (e.g., chalcopyrite, tetrahedrite, and galena). Evidence for an association of low-melting point chalcophile elements (LMCE; Hg, Te, Sb, and Bi) with Au at the Jerome, Kenty, and many (>50%) of the 39 historic deposits sampled, along with native gold filling structurally favorable sites in vein quartz in all samples, indicates a fluid might not have been the only factor contributing to remobilization. This systematic Au-LMCE association strongly supports a model whereby Au is released by CDR reactions and is then remobilized by fluid-mediated, LMCE-rich melts that began to form at 335°C and/or by local, nanoparticle (nanomelt?) transport during deformation and metamorphism. Conclusions drawn from this study have implications for Au deposits globally and can account for the common presence of coarse-grained, commonly crystalline, native gold filling fractures in quartz and the paragenetically late-stage origin of gold in veins. They can also better explain the inability of Au in solution remobilization models to account for locally high gold grades, given the relatively low solubility of Au in hydrothermal fluids.

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 966
Author(s):  
Baptiste Madon ◽  
Lucie Mathieu ◽  
Jeffrey H. Marsh

Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion.


Author(s):  
Anna V. Antipenko ◽  
Anastasia Yu. Loboda ◽  
Elzara A. Khairedinova ◽  
Artem M. Ismagulov ◽  
Ekaterina S. Vashchenkova ◽  
...  

This paper presents the results of the study of metal threads found in the fourteenth-century burials in slabbed graves located atop of the plateau of Eski-Kermen. The inductively coupled plasma mass spectrometry determined the metal of the threads in question as high-grade silver. The results of scanning electron microscopy of the surface morphology of the artefacts allowed the one to suggest a variant of reconstruction of the sequence of technological operations in the manufacture of the metal threads in question. The feature of all the metal threads under study is very even outer and inner surface and stable thickness and width of the metal band. In all cases, gold inclusions were stretched in the mass of metal along the long edge of the bands. Cast metal was flattened into a thin band. Parallel scratches along the butt end of the threads suggest that rolled out metal was cut with a tool with a thin, sharp blade leaving scratches along the course of the blade. Semi-finished products were wound onto an organic core. The threads found in the slabbed graves atop of the plateau of Eski-Kermen were spun silver threads wound onto a silk core. Technologically, these threads correspond to the products of Mediterranean workshops. The location of the metal threads in the burial indicates that they were used in the embroidering of the collar and neck.


2020 ◽  
Author(s):  
Owen Weller ◽  
Simon Jackson ◽  
William Miller ◽  
Marc St-Onge ◽  
Nicole Rayner

<p>Texturally complex monazite grains within two granulite-facies pelitic migmatites from southern Baffin Island, Arctic Canada, were mapped by laser ablation-inductively coupled plasma-mass spectrometry to quantitatively determine the spatial variation in trace element chemistry with a 4-5 μm resolution (with up to 1883 analyses per grain). The maps demarcate growth zones, some of which were cryptic with conventional imaging, highlighting the 3-D complexity of monazite grains that have experienced multiple episodes of growth and resorption during high-grade metamorphism. Associated monazite trace element systematics are highly variable, both within domains interpreted to have grown in a single event, and between samples that experienced similar metamorphic conditions and mineral assemblages. This result cautions against generalised petrological interpretations being made about monazite trace element signatures as it suggests sample-specific controls. Nevertheless, by quantifying monazite textures, a related U-Pb dataset is re-interpreted, allowing ages to be extracted from a continuum of concordant data. The results reveal a ~45 Myr interval between prograde metamorphism and retrograde melt crystallisation in the study region, emphasising the long-lived nature of heat flow in high-grade metamorphic terranes. Careful characterisation of monazite grains suggests that continuum-style U-Pb datasets can be decoded to provide insights into the rates of metamorphic processes.</p>


2019 ◽  
Vol 47 (1) ◽  
pp. 83-94 ◽  
Author(s):  
N. V. Polosmak ◽  
S. S. Shatskaya ◽  
M. V. Zadorozhnyy ◽  
L. P. Kundo ◽  
E. V. Karpova

This article presents the results of interdisciplinary studies of gold artifacts from the elite Xiongnu burials at Noin-Ula (Noyon Uul, Mongolia, early 1st millennium AD), excavated by the Russian-Mongolian expedition in 2006–2012. Using scanning electron microscopy, atomic absorption spectroscopy, and inductively coupled plasma mass spectrometry, 17 artifacts were analyzed. These include ornaments from coffi ns and clothes, made by Chinese artisans. Results suggest that they were all made of native gold, similar to that from the known deposits of Mongolia in terms of elemental composition (for comparison, we used an electronic database relating to 3338 samples of Mongolian native gold). Results of statistical tests suggest that placer deposits were the most probable source of the gold. The results do not contradict the idea that Chinese artisans used Mongolian gold. During the Han era, the Xiongnu could have been among their principal providers. The relationships between the two empires and peoples were always benefi cial for the Xiongnu. Enjoying the numerous achievements of the Han civilization, they offered too little in return. One of the ways the Han dynasty could have benefi ted from their tumultuous neighbors was to receive native gold from them. 


2020 ◽  
Author(s):  
Daniel Bůžek ◽  
Slavomír Adamec ◽  
Kamil Lang ◽  
Jan Demel

<div><p>UiO-66 is a zirconium-based metal-organic framework (MOF) that has numerous applications. Our group recently determined that UiO-66 is not as inert in aqueous dispersions as previously reported in the literature. The present work therefore assessed the behaviour of UiO-66 in buffers: 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), 4-(2-hydroxyethyl)piperazine-1-ethane sulfonic acid (HEPES), N-ethylmorpholine (NEM) and phosphate buffer (PB), all of which are commonly used in many UiO-66 applications. High pressure liquid chromatography and inductively coupled plasma mass spectrometry were used to monitor degradation of the MOF. In each buffer, the terephthalate linker was released to some extent, with a more pronounced leaching effect in the saline forms of these buffers. The HEPES buffer was found to be the most benign, whereas NEM and PB should be avoided at any concentration as they were shown to rapidly degrade the UiO-66 framework. Low concentration TRIS buffers are also recommended, although these offer minimal buffer capacity to adjust pH. Regardless of the buffer used, rapid terephthalate release was observed, indicating that the UiO-66 was attacked immediately after mixing with the buffer. In addition, the dissolution of zirconium, observed in some cases, intensified the UiO-66 decomposition process. These results demonstrate that sensitive analytical techniques have to be used to monitor the release of MOF components so as to quantify the stabilities of these materials in liquid environments.</p></div>


Sign in / Sign up

Export Citation Format

Share Document