NEW 40Ar/39Ar DATING OF ALUNITE FROM THE CERRO QUEMA Au-Cu DEPOSIT, AZUERO PENINSULA, PANAMA

2020 ◽  
Author(s):  
Isaac Corral

Abstract Cerro Quema is a high-sulfidation epithermal Au-Cu deposit located in the Azuero Peninsula, southwestern Panama. It is hosted by a dacite dome complex of the Río Quema Formation, a volcano-sedimentary sequence of the Panamanian Cretaceous-Paleogene magmatic arc. Cerro Quema has oxide resources of 24.60 Mt at 0.71 g/t Au and 0.04% Cu, and sulfide resources of 11.38 Mt at 0.41 g/t Au and 0.31% Cu. Alunite 40Ar/39Ar dating of a sample from Cerro Quema yielded a final age of 48.8 ± 2.2 Ma (weighted average of plateau age) and 49.2 ± 3.3 Ma (weighted average of total gas age). This age is interpreted to represent the formational age of the Cerro Quema deposit at ~49 Ma, linking it to the Valle Rico batholith intrusive event. Based on the new alunite 40Ar/39Ar data and a reexamination of published geochronological data, magmatic-hydrothermal deposits such as the Río Pito porphyry copper and the Cerro Quema high-sulfidation epithermal deposit formed during the early arc stage (68–40 Ma) in the Chagres-Bayano arc (eastern Panama) and the Soná-Azuero arc (western Panama), respectively. They formed in a similar geodynamic setting at ~49 Ma, when diorites and quartz-diorites intruded Cretaceous volcano-sedimentary sequences. Cerro Quema and Río Pito provide evidence for the exploration potential of Cretaceous-Paleogene arc segments. Exploration should focus on Cretaceous volcanic and volcano-sedimentary sequences intruded by Paleogene batholiths of intermediate to felsic composition.

2021 ◽  
Vol 73 (1) ◽  
pp. A121220
Author(s):  
Isaac Corral

The Cerro Quema Au-Cu deposit is hosted by a dacite dome complex of the Río Quema Formation, a Late Campanian-Maastrichtian volcano-sedimentary sequence of the Panamanian magmatic arc. Its formational age is constrained at ~49 Ma by field evidences, crosscutting relationships and 40Ar/39Ar geochronology (Corral et al., 2016, Corral, 2021). The recent molybdenite Re-Os dates by Perelló et al. (2020) claim that ore is spatially and temporally related to the host volcanic domes at ~71 Ma. After a thorough review of the geologic, geochemical and geochronological data from the Cerro Quema area, it is concluded that the Re-Os dates of Perelló et al. (2020) are not representative of the Cerro Quema formational age. Their proposed formational age at ~71 Ma is significantly older than the age of the host rock (~67 Ma). Furthermore, they invoke a previously unrecognized regional-scale magmatic event solely based on their molybdenite Re-Os dates. Instead, the Cerro Quema genetic model discussed here, in which magmatic-hydrothermal fluids derived from porphyry copper-like intrusions associated with the Valle Rico batholith produced the Au-Cu mineralization at ~49 Ma, is consistent with the geology, geochemistry and geochronology of the Azuero Peninsula.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 476
Author(s):  
Hanxiao Huang ◽  
Hong Liu ◽  
Guangming Li ◽  
Linkui Zhang ◽  
Huawen Cao ◽  
...  

The Gangdese metallogenic belt in Tibet is an important copper and iron polymetallic, metallogenic belt in western China. The Luobuzhen epithermal Au-Ag and Hongshan porphyry Cu deposits, as two new discovery deposits in the last few years, are located in the western Gangdese metallogenic belt. In this paper, we present quartz vein Rb-Sr isochron, zircon U-Pb and molybdenite Re-Os ages for a better understanding of the minerallogenetic epoch of the deposits. Geochronological data show that the Rb-Sr isochron age of a quartz vein in a Luobuzhen Au-Ag deposit is 21.1 ± 1.8 Ma (MSWD (mean standard weighted deviation) = 0.19), zircon U-Pb ages from diorite and granodiorite porphyry in Hongshan Cu deposit are 50.0 ± 0.4 Ma (MSWD = 0.94) and 23.7 ± 0.1 Ma (MSWD = 0.73), respectively, and a Re-Os isochron age of molybdenite in Hongshan Cu deposit is 23.0 ± 2.0 Ma (MSWD = 0.014). These data suggest that the Luobuzhen epithermal Au-Ag and Hongshan porphyry Cu deposits formed at ca. 23–21 Ma, which were controlled by the same magmatic hydrothermal events. Formation of both the Luobuzhen and Hongshan deposits were obviously earlier than the Miocene porphyry metallogenetic events in the Gangdese porphyry copper belt.


2021 ◽  
Vol 73 (1) ◽  
pp. A101220
Author(s):  
José Perelló ◽  
Robert A. Creaser ◽  
Alfredo García

Dear Editor, we thank Corral (2020) for his anticipated interest in our paper on the timing of the porphyry-related high-sulfidation epithermal mineralization at Cerro Quema in the Azuero peninsula of southwestern Panama. Our study, based on three Re-Os ages for molybdenite intimately associated with Cu-bearing sulfide minerals from the hypogene roots of the La Pava center (Figure 1), shows that the main event of high-sulfidation Cu mineralization took place during the earliest Maastrichtian at ~71 Ma. The reported ages, together with the geologic relationships described in our paper (Perelló et al., 2020), plus a series of regional geologic, structural, petrochemical, and geotectonic considerations, not only precisely date the porphyry-related nature of the Cerro Quema high-sulfidation mineralization, but are also significant in that they confirm the rapid evolution of the earliest stages of the Central American Arc – from subduction initiation at 75-73 Ma to arc stability and maturation at 71 Ma (e.g., Buchs et al., 2011a and references therein) – and place the mineralization in a regional geodynamic setting. Irrespective of the regional geologic arguments reiterated by Corral (2020) in support of his previous genetic interpretation (e.g., Corral et al., 2016) and to invalidate our conclusions, Corral´s real concern is the reliability of our molybdenite ages, which are much older than his preferred age of mineralization for Cerro Quema. We believe that many of the points raised by Corral (2020), including the regional and local geologic backgrounds of the deposit and the dated samples, were properly addressed in Perelló et al. (2020), and that it would be redundant to repeat them here. Additional petrochemical evidence in support can be found in Whattam and Stern (2015, 2020) and Whatam (2018).


1995 ◽  
Vol 7 (1) ◽  
pp. 99-113 ◽  
Author(s):  
J.L. Smellie ◽  
M. Liesa ◽  
J.A. Muñoz ◽  
F. Sàbat ◽  
R. Pallàs ◽  
...  

Livingston Island contains several, distinctive sedimentary and volcanic sequences, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The turbiditic, late Palaeozoic–early Mesozoic Miers Bluff Formation (MBF) is divided into the Johnsons Dock and Napier Peak members, which may represent sedimentation in upper and lower mid-fan settings, respectively, prior to pre-late Jurassic polyphase deformation (dominated by open folding). The Moores Peak breccias are formed largely of coarse clasts reworked from the MBF. The breccias may be part of the MBF, a separate unit, or part of the Mount Bowles Formation. The structural position is similar to the terrigenous Lower Jurassic Botany Bay Group in the northern Antarctic Peninsula, but the precise stratigraphical relationships and age are unknown. The (?) Cretaceous Mount Bowles Formation is largely volcanic. Detritus in the volcaniclastic rocks was formed mainly during phreatomagmatic eruptions and redeposited by debris flows (lahars), whereas rare sandstone interbeds are arkosic and reflect a local provenance rooted in the MBF. The Pleistocene–Recent Inott Point Formation is dominated by multiple, basaltic tuff cone relicts in which distinctive vent and flank sequences are recognized. The geographical distribution of the Edinburgh Hill Formation is closely associated with faults, which may have been reactivated as dip-slip structures during Late Cenozoic extension (arc splitting).


2001 ◽  
Vol 34 (3) ◽  
pp. 985 ◽  
Author(s):  
T. REISCHMANN ◽  
D. K. KOSTOPOULOS ◽  
S. LOOS ◽  
B. ANDERS ◽  
A. AVGERINAS ◽  
...  

We dated basement rocks from several localities southwest of Mt. Olympos, as well as from a locality near the top of the mountain using the single zircon Pb/Pb evaporation technique. For the samples southwest of the mountain, the ages obtained range from ca. 280 to 290 Ma, with only a few zircon grains being around 300 Ma. By contrast, the sample from near the top of the mountain appears to be slightly younger, with ca. 270 Ma. These ages imply that the granitoids crystallized during Late Carboniferous - Early Permian times, and are therefore younger than the basement gneisses of other regions of the Pelagonian zone, which yielded zircon ages of around 300 Ma (e.g. Yarwood & Aftalion 1976, Mountrakis 1983, De Bono 1998, Engel & Reischmann 2001). However, the ages obtained in the present study are identical, within error, to the muscovite Ar-Ar cooling ages from Mt. Ossa (Lips 1998). Our geochronological data show that the magmatic evolution for this part of the basement of the Pelagonian Zone lasted at least 30 Ma.


2022 ◽  
Author(s):  
Glenn R. Sharman ◽  
Daniel F. Stockli ◽  
Peter Flaig ◽  
Robert G. Raynolds ◽  
Marieke Dechesne ◽  
...  

ABSTRACT Detrital zircon U-Pb and (U-Th)/He ages from latest Cretaceous–Eocene strata of the Denver Basin provide novel insights into evolving sediment sourcing, recycling, and dispersal patterns during deposition in an intracontinental foreland basin. In total, 2464 U-Pb and 78 (U-Th)/He analyses of detrital zircons from 21 sandstone samples are presented from outcrop and drill core in the proximal and distal portions of the Denver Basin. Upper Cretaceous samples that predate uplift of the southern Front Range during the Laramide orogeny (Pierre Shale, Fox Hills Sandstone, and Laramie Formation) contain prominent Late Cretaceous (84–77 Ma), Jurassic (169–163 Ma), and Proterozoic (1.69–1.68 Ga) U-Pb ages, along with less abundant Paleozoic through Archean zircon grain ages. These grain ages are consistent with sources in the western U.S. Cordillera, including the Mesozoic Cordilleran magmatic arc and Yavapai-Mazatzal basement, with lesser contributions of Grenville and Appalachian zircon recycled from older sedimentary sequences. Mesozoic zircon (U-Th)/He ages confirm Cordilleran sources and/or recycling from the Sevier orogenic hinterland. Five of the 11 samples from syn-Laramide basin fill (latest Cretaceous–Paleocene D1 Sequence) and all five samples from the overlying Eocene D2 Sequence are dominated by 1.1–1.05 Ga zircon ages that are interpreted to reflect local derivation from the ca. 1.1 Ga Pikes Peak batholith. Corresponding late Mesoproterozoic to early Neoproterozoic zircon (U-Th)/He ages are consistent with local sourcing from the southern Front Range that underwent limited Mesozoic–Cenozoic unroofing. The other six samples from the D1 Sequence yielded detrital zircon U-Pb ages similar to pre-Laramide units, with major U-Pb age peaks at ca. 1.7 and 1.4 Ga but lacking the 1.1 Ga age peak found in the other syn-Laramide samples. One of these samples yielded abundant Mesozoic and Paleozoic (U-Th)/He ages, including prominent Early and Late Cretaceous peaks. We propose that fill of the Denver Basin represents the interplay between locally derived sediment delivered by transverse drainages that emanated from the southern Front Range and a previously unrecognized, possibly extraregional, axial-fluvial system. Transverse alluvial-fluvial fans, preserved in proximal basin fill, record progressive unroofing of southern Front Range basement during D1 and D2 Sequence deposition. Deposits of the upper and lower D1 Sequence across the basin were derived from these fans that emanated from the southern Front Range. However, the finer-grained, middle portion of the D1 Sequence that spans the Cretaceous-Paleogene boundary was deposited by both transverse (proximal basin fill) and axial (distal basin fill) fluvial systems that exhibit contrasting provenance signatures. Although both tectonic and climatic controls likely influenced the stratigraphic development of the Denver Basin, the migration of locally derived fans toward and then away from the thrust front suggests that uplift of the southern Front Range may have peaked at approximately the Cretaceous-Paleogene boundary.


2021 ◽  
Author(s):  
Vahid Teknik ◽  
Irina Artemieva ◽  
Hans Thybo

<p>We interpret the paleotectonic evolution and structure in the Tethyan belt by analyzing magnetic data sensitive to the presence of iron-rich minerals in oceanic fragments and mafic intrusions, hidden beneath sedimentary sequences or overprinted by younger tectono-magmatic events. By comparing the depth to magnetic basement (DMB) as a proxy for sedimentary thickness with average crustal magnetic susceptibility (ACMS), we conclude:</p><p> (1) Major ocean and platform basins have DMB >10 km. Trapped ocean relics may be present below Central Anatolian micro-basins with DMB at 6-8 km and high ACSM.  In intra-orogenic basins, we identify magmatic material within the sedimentary cover by significantly smaller DMB than depth to seismic basement.</p><p>(2) Known magmatic arcs (Pontides and Urima-Dokhtar) have high-intensity heterogeneous ACMS. We identify a 450 km-long buried (DMB >6 km) magmatic arc or trapped oceanic crust along the western margin of the Kirşehır massif from a strong ACMS anomaly. Large, partially buried magmatic bodies form the Caucasus LIP at the Transcaucasus and Lesser Caucasus and in NW Iran.</p><p>(3) Terranes of Gondwana affinity in the Arabian plate, S Anatolia and SW Iran have low-intensity homogenous ACMS.</p><p>(4) Local poor correlation between known ophiolites and ACMS anomalies indicate a small volume of presently magnetized material in the Tethyan ophiolites, which we explain by demagnetization during recent magmatism.</p><p>(5) ACMS anomalies are weak at tectonic boundaries and faults. However, the Cyprus subduction zone has a strong magnetic signature which extends ca. 500 km into the Arabian plate.</p>


1991 ◽  
Vol 28 (4) ◽  
pp. 504-511 ◽  
Author(s):  
Ronald Doig ◽  
J. Brendan Murphy ◽  
R. Damian Nance

In the Cobequid Highlands of Nova Scotia, low-grade late Precambrian arc-related volcano-sedimentry rocks typical of the Avalon Composite Terrane overlie platformal metasedimentry rocks and are spatially associated with gneisses previously considered to be basement to both these units. U–Pb zircon dates of 580–587 Ma from an orthogneiss and an amphibolite are similar to the U–Pb zircon dates of 580–610 Ma from both syntectonic granites in ductile shear zones and high-level posttectonic plutons that intruded the Avalonian successions. Hence, the gneisses do not represent basement but are an integral part of the Avalonian orogenic cycle. The geochronological data indicate that penetrative fabrics in the gneisses, syntectonic granites, and volcano-sedimentary successions are penecontemporaneous (ca. 580–620 Ma) and not sequential, as previously interpreted. The gneisses have a metamorphic fabric (S1a), crystallized under amphibolite-facies conditions, and may represent the deeper roots of a late Precambrian magmatic arc. Fabrics within the deformed granite gneisses (S1b) are interpreted as reflecting crystallization within active ductile shear zones associated with intra-arc transtension and basin development. Fabrics in the volcano-sedimentary successions (S1c) are associated with deformation of the basin.


Author(s):  
Fida Murad ◽  
Abdul Ghaffar ◽  
Innayat Ullah ◽  
Abdul Shakoor Mastoi ◽  
Muhammad Tariq Zaman

Subduction related Miocene porphyry type deposits are found in the east-west trending Chagai magmatic belt (CMB) in Pakistan's western margin, Balochistan. This arc exists on the west segment of the Tethyan metallogenic belt in the south-west of Pakistan. Tethyan metallogenic belt is widely spread over 12,000 km from east to west direction from Indochina, Tibet, Pakistan, Iran, Turkey and Alpine mountain range in Europe. During the last thirty to forty years several porphyry deposits have been reported in the Chagai magmatic arc, including the very large Reko Diq H14-H15, large Saindak, Tanjeel, H35, H8 and medium Dasht-e-Kain porphyry deposits and many small porphyry copper deposits. These porphyry deposits were developed within the phase of calc-alkaline type magmatism in the Chagai arc. Tonalite, quartz diorite, and monzonite host the porphyry deposits within the adjacent sedimentary wall rock units of Sinjrani Volcanic Group, Juzzak, Saindak, and Amalaf Formations. The concentric zonal pattern of hydrothermal alteration in these porphyry deposits of the Chagai magmatic arc follows the world's major porphyry deposits' alteration pattern. Zones of hydrothermal alteration from distal to proximal part includesa potassic alteration, sericitic-clay-chlorite alteration, sericitic alteration, argillic alteration and propylitic alteration. Major ore mineralization in these deposits is of copper, gold, silver, molybdenum, and minor constituents of other base metals that have been reported to occur within hydrothermal alteration zones in the Miocene porphyry Chagai magmatic arc


Sign in / Sign up

Export Citation Format

Share Document