scholarly journals Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry–Epithermal Metallogenic System

Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 476
Author(s):  
Hanxiao Huang ◽  
Hong Liu ◽  
Guangming Li ◽  
Linkui Zhang ◽  
Huawen Cao ◽  
...  

The Gangdese metallogenic belt in Tibet is an important copper and iron polymetallic, metallogenic belt in western China. The Luobuzhen epithermal Au-Ag and Hongshan porphyry Cu deposits, as two new discovery deposits in the last few years, are located in the western Gangdese metallogenic belt. In this paper, we present quartz vein Rb-Sr isochron, zircon U-Pb and molybdenite Re-Os ages for a better understanding of the minerallogenetic epoch of the deposits. Geochronological data show that the Rb-Sr isochron age of a quartz vein in a Luobuzhen Au-Ag deposit is 21.1 ± 1.8 Ma (MSWD (mean standard weighted deviation) = 0.19), zircon U-Pb ages from diorite and granodiorite porphyry in Hongshan Cu deposit are 50.0 ± 0.4 Ma (MSWD = 0.94) and 23.7 ± 0.1 Ma (MSWD = 0.73), respectively, and a Re-Os isochron age of molybdenite in Hongshan Cu deposit is 23.0 ± 2.0 Ma (MSWD = 0.014). These data suggest that the Luobuzhen epithermal Au-Ag and Hongshan porphyry Cu deposits formed at ca. 23–21 Ma, which were controlled by the same magmatic hydrothermal events. Formation of both the Luobuzhen and Hongshan deposits were obviously earlier than the Miocene porphyry metallogenetic events in the Gangdese porphyry copper belt.

2019 ◽  
Vol 114 (7) ◽  
pp. 1301-1337 ◽  
Author(s):  
Samvel Hovakimyan ◽  
Robert Moritz ◽  
Rodrik Tayan ◽  
Rafael Melkonyan ◽  
Marianna Harutyunyan

Abstract The Zangezur-Ordubad mining district of the southernmost Lesser Caucasus is located in the central segment of the Tethyan metallogenic belt and consists of porphyry Cu-Mo and epithermal Au and base metal systems hosted by the composite Cenozoic Meghri-Ordubad pluton. Ore-hosting structures and magmatic intrusions are predominantly confined to a central N-S–oriented corridor 40 km long and 10 to 12 km wide, located between two regional NNW-oriented right-lateral faults, the Khustup-Giratagh and Salvard-Ordubad faults. The anatomy and kinematics of the main fault network are consistent with dextral strike-slip tectonics controlled by the NNW-oriented Khustup-Giratagh and Salvard-Ordubad faults. Dextral strike-slip tectonics was initiated during the Eocene, concomitantly with final subduction of the Neotethys, and controlled the emplacement of the Agarak, Hanqasar, Aygedzor, and Dastakert porphyry Cu-Mo and Tey-Lichkvaz and Terterasar epithermal Au and base metal deposits. The Eocene structures were repeatedly reactivated during subsequent Neogene evolution in transition to a postsubduction geodynamic setting. Ore-bearing structures at the Oligocene world-class Kadjaran porphyry Cu-Mo deposit were also controlled by dextral strike-slip tectonics, as well as porphyry mineralization and its epithermal overprint hosted by an early Miocene intrusion at Lichk. Eocene to early Miocene dextral strike-slip tectonics took place during NE- to NNE-oriented compression related to Paleogene Eurasia-Arabia convergence and subsequent Neogene postcollision evolution. Paleostress reconstruction indicates major reorganization of tectonic plate kinematics since the early Miocene, resulting in N-S– to NW-oriented compression. Early Miocene epithermal overprint at the Kadjaran porphyry deposit and left-lateral reactivation of faults and mineralized structures are linked to this late Neogene tectonic plate reorganization.


2020 ◽  
Author(s):  
Isaac Corral

Abstract Cerro Quema is a high-sulfidation epithermal Au-Cu deposit located in the Azuero Peninsula, southwestern Panama. It is hosted by a dacite dome complex of the Río Quema Formation, a volcano-sedimentary sequence of the Panamanian Cretaceous-Paleogene magmatic arc. Cerro Quema has oxide resources of 24.60 Mt at 0.71 g/t Au and 0.04% Cu, and sulfide resources of 11.38 Mt at 0.41 g/t Au and 0.31% Cu. Alunite 40Ar/39Ar dating of a sample from Cerro Quema yielded a final age of 48.8 ± 2.2 Ma (weighted average of plateau age) and 49.2 ± 3.3 Ma (weighted average of total gas age). This age is interpreted to represent the formational age of the Cerro Quema deposit at ~49 Ma, linking it to the Valle Rico batholith intrusive event. Based on the new alunite 40Ar/39Ar data and a reexamination of published geochronological data, magmatic-hydrothermal deposits such as the Río Pito porphyry copper and the Cerro Quema high-sulfidation epithermal deposit formed during the early arc stage (68–40 Ma) in the Chagres-Bayano arc (eastern Panama) and the Soná-Azuero arc (western Panama), respectively. They formed in a similar geodynamic setting at ~49 Ma, when diorites and quartz-diorites intruded Cretaceous volcano-sedimentary sequences. Cerro Quema and Río Pito provide evidence for the exploration potential of Cretaceous-Paleogene arc segments. Exploration should focus on Cretaceous volcanic and volcano-sedimentary sequences intruded by Paleogene batholiths of intermediate to felsic composition.


2020 ◽  
Vol 115 (1) ◽  
pp. 51-77
Author(s):  
Xuyang Meng ◽  
Jeremy Richards ◽  
Jingwen Mao ◽  
Huishou Ye ◽  
S. Andrew DuFrane ◽  
...  

Abstract The Tongkuangyu copper deposit in the Zhongtiaoshan region, southern Trans-North China orogen, is hosted by a poorly constrained sequence of Paleoproterozoic volcano-sedimentary (quartz-sericite schist and biotite schist) and granitic rocks that have been metamorphosed to lower greenschist facies and variably deformed. The deposit has previously been proposed to be either a porphyry-type or a sediment-hosted stratiform Cu deposit, and its age of formation has been debated. The quartz-sericite schist is interpreted to be a felsic crystal tuff and consists of angular quartz crystals in a fine-grained sericite-altered matrix. Two quartz-sericite schist samples yielded zircon U-Pb upper concordia intercept ages of 2512 ± 12 (2σ, mean square of weighted deviates [MSWD] = 0.19) and 2335 ± 16 Ma (2σ, MSWD = 0.80). Biotite schist, which is interleaved locally with the quartz-sericite schist and is interpreted to be a basaltic-andesitic sill, yielded a younger zircon U-Pb upper concordia intercept age of 2191 ± 10 Ma (2σ, MSWD = 1.7). Five samples of granodiorite and granodiorite porphyry that intruded the schist sequence yielded similar zircon U-Pb ages, with a weighted mean upper concordia intercept age of 2182 ± 7 Ma (2σ, MSWD = 1.3). These results suggest that the volcanic sequence was deposited between ∼2.5 and 2.3 Ga and was intruded by basaltic-andesitic sills and a suite of granodiorite and granodiorite porphyry intrusions at ∼2.19 to 2.18 Ga. Two stages of copper mineralization are interpreted to have formed after pervasive sericite alteration of the felsic volcanic rocks. Stage 1 mineralization includes disseminated and deformed quartz veinlets containing chalcopyrite ± pyrite ± magnetite ± molybdenite associated with biotite ± K-feldspar alteration in granodiorite porphyry and schist. Stage 2 comprises undeformed quartz-chlorite-carbonate veins with bornite ± chalcopyrite ± magnetite associated with local chlorite and silicic alteration. Allanite crystals intergrown with chalcopyrite in the granodiorite porphyry yielded an approximate concordia U-Pb age of 2115 ± 31 Ma (2σ, MSWD = 2.3). Two molybdenite samples in a deformed quartz-chalcopyrite-molybdenite vein yielded Re-Os model ages of 2106 ± 9 and 2089 ± 9 Ma (2σ), consistent with previously published results. Hydrothermal monazite grains with Cu-Fe sulfide inclusions in the granodiorite porphyry, quartz-sericite schist, and undeformed chlorite-bornite-quartz veins yielded much younger U-Pb upper concordia intercept ages of 1832 ± 16 (2σ, MSWD = 0.48), 1810 ± 14 (2σ, MSWD = 0.92), and 1809 ± 12 Ma (2σ, MSWD = 0.38), respectively. The results are in agreement with four Re-Os model ages for pyrite mineral separates from undeformed quartz-sulfide veins, which yielded a weighted mean age of 1807 ± 4 Ma (2σ, n = 4, MSWD = 0.42). In contrast, hydrothermal rutile crystals in the quartz-sericite schist and biotite schist yielded a range of roughly concordant ages between 2.1 and 1.8 Ga, reflecting isotopic disturbance. We interpret these results to indicate original copper mineralization at ∼2.1 Ga that is significantly later than the granodiorite (∼2.18 Ga) and schists (∼2.5–2.2 Ga), followed by hydrothermal remobilization and metamorphism at ∼1.8 Ga. The metavolcanic and granodiorite porphyry host rocks, alteration styles, and disseminated and veinlet form of the earlier mineralization are strongly reminiscent of porphyry Cu deposits, and ages of ∼2.1 Ga have been reported for one intrusion and three volcanic rock samples from the district. The Tongkuangyu, therefore, represents one of the oldest known porphyry copper deposits. Remobilization of copper occurred at ∼1.8 Ga during the Zhongtiao orogeny.


2019 ◽  
Vol 55 (1) ◽  
pp. 34 ◽  
Author(s):  
Ananias Tsirambides ◽  
Anestis Filippidis

Various types of deposits such as carbonate-replacement Pb-Zn-Ag-Au, porphyry Cu-Mo-Au, stratiform volcano-sedimentary, isolated magmatic-hydrothermal and skarns compose the Serbomacedonian-Rhodope Metallogenic Belt (SRMB), which intersects with a NNW-SSE trend the Balkan Peninsula. This arcuate belt is about 500 km long and 130-180 km wide. Sb-Bi alloys and Ag-Cu-Pb-Sb-Bi sulfosalts have been discovered in some metal assemblages in the SRMB. The European Union (EU) is highly dependent on critical and rare metals, such as Sb and Bi, which are very important for a sustainable development. Greece is one of the EU countries with the most potential for supplying the strategic metal Sb in the future, since it hosts a significant ore deposit at Rizana/Lachanas (central Macedonia). Here, the stibnite reserves are 5,000 t (proven) and 50,000-100,000 t (indicated). Both have average Sb=0.3 wt%. In addition, at the same district, there are 1000 t (proven) of wolframite. Another promising Sb-bearing mineral assemblage exists at Alshar (North Macedonia). Here, the stibnite reserves are >20,000 t (indicated) with average Sb=0.5 wt%. At both mineralization districts further investigations are needed to determine the grade and the proven reserves of the critical metal Sb. Until today none encouraging site has been located in the SRMB for remarkable Bi-bearing ore.


2018 ◽  
Vol 102 ◽  
pp. 351-367 ◽  
Author(s):  
Wenting Huang ◽  
Huaying Liang ◽  
Lei Wu ◽  
Jing Wu ◽  
Jing Li ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 191 ◽  
Author(s):  
Qun Yang ◽  
Yun-Sheng Ren ◽  
Sheng-Bo Chen ◽  
Guo-Liang Zhang ◽  
Qing-Hong Zeng ◽  
...  

The giant Pulang porphyry Cu (–Mo–Au) deposit in Northwestern Yunnan Province, China, is located in the southern part of the Triassic Yidun Arc. The Cu orebodies are mainly hosted in quartz monzonite porphyry (QMP) intruding quartz diorite porphyry (QDP) and cut by granodiorite porphyry (GP). New LA-ICP-MS zircon U–Pb ages indicate that QDP (227 ± 2 Ma), QMP (218 ± 1 Ma, 219 ± 1 Ma), and GP (209 ± 1 Ma) are significantly different in age; however, the molybdenite Re–Os isochron age (218 ± 2 Ma) indicates a close temporal and genetic relationship between Cu mineralization and QMP. Pulang porphyry intrusions are enriched in light rare-earth elements (LREEs) and large ion lithophile elements (LILEs), and depleted in heavy rare-earth elements (HREEs) and high field-strength elements (HFSEs), with moderately negative Eu anomalies. They are high in SiO2, Al2O3, Sr, Na2O/K2O, Mg#, and Sr/Y, but low in Y, and Yb, suggesting a geochemical affinity to high-silica (HSA) adakitic rocks. These features are used to infer that the Pulang HSA porphyry intrusions were derived from the partial melting of a basaltic oceanic-slab. These magmas reacted with peridotite during their ascent through the mantle wedge. This is interpreted to indicate that the Pulang Cu deposit and associated magmatism can be linked to the synchronous westward subduction of the Ganzi–Litang oceanic lithosphere, which has been established as Late Triassic.


2017 ◽  
Vol 112 (7) ◽  
pp. 1719-1746 ◽  
Author(s):  
Jia Chang ◽  
Jian-Wei Li ◽  
David Selby ◽  
Jia-Cheng Liu ◽  
Xiao-Dong Deng

Abstract The Yulong porphyry Cu-Mo deposit, the third largest porphyry Cu deposit in China, contains proven reserves of > 6.5 million metric tons (Mt) Cu and 0.4 Mt Mo. Previous radiometric dating studies have provided numerous ages for this deposit, but the timing and duration of the process governing the deposition of Cu and Mo remains not well constrained. In this paper, we first document multiple stages of mineralization and hydrothermal alteration associated with distinct magmatic pulses at Yulong by field and textural relationships, and then present high-precision molybdenite Re-Os ages of 14 quartz-molybdenite ± chalcopyrite veins representing these stages to precisely constrain the timing and duration of Cu-Mo mineralization. The ore-hosting Yulong composite stock consists of three successive porphyry intrusions: (1) monzonitic granite porphyry (MGP), (2) K-feldspar granite porphyry (KGP), and (3) quartz albite porphyry (QAP). The vein formation, Cu-Mo mineralization, and ore-related alteration are grouped into early, transitional, and late stages with respect to the intrusive history. The first two porphyry intrusions are followed by cyclical sequences of veining that are mainly associated with potassic alteration and have formed (1) ME vein/USTT, (2) EBE/T veins, (3) A1E/T veins, (4) A2E/BT veins, and (5) A3E/T veins. A2E/BT and A3E/T veins of the early and transitional stages are dominated by quartz and chalcopyrite ± pyrite, respectively, and represent the main Cu-Mo mineralization events. More than 80% of Cu and Mo at Yulong were deposited in the early stage with the remainder being formed in the transitional stage. The late-stage pyrite-quartz veins (DL), which are characterized by sericitic alteration halos, postdate the intrusion of QAP dikes and have no economic significance. Molybdenite Re-Os ages of A2E and BT veins indicate that sulfide deposition at Yulong was episodic over a prolonged history lasting over 5.13 ± 0.23 m.y. (1σ). However, the bulk Cu-Mo ores formed in a shorter time interval of 1.36 ± 0.24 m.y. (1σ) with most Cu precipitated in a more restricted timespan of 0.82 ± 0.24 m.y. (1σ) in the early stage. These results, combined with geochronologic data from porphyry copper deposits elsewhere, confirm that multiple magmatic-hydrothermal pulses with a lifespan of tens to hundreds of thousands of years are sufficient to form a giant porphyry copper deposit. Factors such as metal concentration, volume, and focusing efficiency of ore-forming fluids could have played important roles in producing a giant porphyry Cu deposit regardless of a short- or long-lived magmatic-hydrothermal system.


2019 ◽  
Vol 11 (14) ◽  
pp. 1729 ◽  
Author(s):  
Mengjuan Wu ◽  
Kefa Zhou ◽  
Quan Wang ◽  
Jinlin Wang

Identifying hydrothermal zoning pattern associated with porphyry copper deposit is important for indicating its economic potential. Traditional approaches like systematic sampling and conventional geological mapping are time-consuming and labor extensive, and with limitations for providing small scale information. Recent developments suggest that remote sensing is a powerful tool for mapping and interpreting the spatial pattern of porphyry Cu deposit. In this study, we integrated in situ spectral measurement taken at the Yudai copper deposit in the Kalatag district, northwestern China, information obtained by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as well as the spectra of samples (hand-specimen) measured using an Analytical Spectral Device (ASD) FieldSpec4 high-resolution spectrometer in laboratory, to map the hydrothermal zoning pattern of the copper deposit. Results proved that the common statistical approaches, such as relative band depth and Principle Component Analysis (PCA), were unable to identify the pattern accurately. To address the difficulty, we introduced a curve-fitting technique for ASTER shortwave infrared data to simulate Al(OH)-bearing, Fe/Mg(OH)-bearing, and carbonate minerals absorption features, respectively. The results indicate that the absorption feature parameters can effectively locate the ore body inside the research region, suggesting the absorption feature parameters have great potentials to delineate hydrothermal zoning pattern of porphyry Cu deposit. We foresee the method being widely used in the future.


Sign in / Sign up

Export Citation Format

Share Document