Chapter 29: Grasberg Copper-Gold-(Molybdenum) Deposit: Product of Two Overlapping Porphyry Systems

2020 ◽  
pp. 599-620
Author(s):  
Clyde Leys ◽  
Adam Schwarz ◽  
Mark Cloos ◽  
Sugeng Widodo ◽  
J. Richard Kyle ◽  
...  

Abstract The supergiant Grasberg porphyry deposit in Papua, Indonesia (5.26 Gt @ 0.61% Cu and 0.57 g/t Au, with no cutoff applied) is hosted by the Grasberg Igneous Complex that fills an upward-flared diatreme ~1,800 m wide at the 4,250-m surface elevation. The Grasberg Igneous Complex is emplaced into folded and strike-slip faulted Tertiary and older sediments and comprises 3.6 to 3.3 Ma Dalam monzodiorite intrusions and subordinate volcanic rocks occupying much of the pipe, the central 3.2 Ma Main Grasberg intrusion, and the NW-SE-trending 3.2 to 3.0 Ma Kali dikes. The Grasberg Igneous Complex contains two porphyry systems: Gajah Tidur copper-(molybdenum) and Main Grasberg copper-gold. The Gajah Tidur intrusion belongs to the Dalam igneous group and is a 3.4 Ma porphyritic monzonite with its top at a 2,750-m elevation; it is overprinted by an extensive, domal, quartz stockwork, with a low-grade and intensely phyllic-altered core, surrounded by molybdenite-bearing veins, with a pre-Main Grasberg Re-Os age, as well as chalcopyrite and overprinting pyrite-covellite veins. The strongly potassic-altered, Main Grasberg monzodiorite porphyry extends from surface to the 2,700-m elevation and is overprinted by a cylindrical, ~1-km-diameter, intense quartz-magnetite stockwork cut by abundant chalcopyrite-bornite veins with rare molybdenite dated at 3.09 Ma. A 700-m-wide annulus of chalcopyrite overprinted by pyrite-covellite-mineralized phyllic alteration surrounds the stockwork. Altered and mineralized Main Grasberg and surrounding Dalam rocks were subsequently wedged apart by the largely unmineralized Kali dikes. Gold is predominantly associated with the Main Grasberg porphyry system where it occurs as 1- to 150-µm (avg ~15 µm) native gold inclusions within chalcopyrite and bornite. Melt and fluid inclusions from Main Grasberg stockwork quartz veins, which exhibit crack-seal textures, comprise K-feldspar-rich silicate melt, sulfide melt, virtually water-free salt melt, and coexisting hypersaline and vapor-rich fluids. Factors important in forming the Grasberg deposit include the following: (1) generation of highly oxidized fertile magma in a postsubduction tectonic setting; (2) efficient extraction of metals from the parental magma chamber; (3) prolonged maintenance of a fluid-accumulating cupola in a strike-slip structural setting that delivered multiple overlapping discharges of metal-rich fluid; (4) highly focused fluid flow into a narrow, permeable stockwork zone in which a steep temperature gradient enabled highly efficient copper and gold precipitation and led to high ore grades; (5) limited dilution by postmineral intrusions; (6) the youthfulness of the deposit minimized erosion and resulted in preservation of nearly all the high-grade Main Grasberg porphyry orebody; and (7) the proximity of the two porphyry centers enables them to be mined as a single, large deposit. The Gajah Tidur copper-(molybdenum) and Main Grasberg copper-gold porphyry centers overlap in space and formed within ~250,000 years of one another. However, their distinct metal endowment, depth of emplacement, and geometry indicate that they formed under different magmatic, hydrothermal, and structural conditions, which are the subject of ongoing research.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Toe Naing Oo ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji

The Kyaukmyet prospect lies approximately 5 km ENE of the highsulfidation Kyisintaung copper-gold deposit, Monywa district, central Myanmar. Geologically, the research area is remarked by magmatic extrusion that occurred during the Late Oligocene to Middle Miocene of Magyigon Formation which led to the outcrops of volcanic rocks. Study detailed on petrographical and geochemical of the Kyaukmyet volcanic rocks has not been performed before the present work. The principal aim of this paper is to document the petrographical and geochemical characteristics of volcanic suite rocks exposed in the Kyaukmyet prospect. The results of this data have provided insight into the origin of the rocks and petrogenetic processes during evolution. Petrographically, all the studied volcanic rocks in the research area show that trachytic and porphyritic textures with phenocrysts of quartz, plagioclase, and K-feldspar which are embedded in a fine to medium grained groundmass. The accessory minerals of this rock consist of biotite, chlorite and opaque mineral.Geochemically, these volcanic rocks having calc-alkaline nature and classified as volcanic field (rhyolite) as well as volcanic arc setting. Based on the chondrite normalized spider diagram, LREE has enriched to HREE in this area which indicated negative Eu anomaly and subduction tectonic setting.



2011 ◽  
Vol 48 (6) ◽  
pp. 1000-1020 ◽  
Author(s):  
Nathan Hayward ◽  
Andrew J. Calvert

The structure and stratigraphy of the southeast Nechako Basin, which are poorly understood primarily because of substantial volcanic cover, are investigated in an analysis of seismic reflection, well, and potential field data. Formation and development of the SE Nechako Basin resulted in sub-basins containing Cretaceous and Eocene rocks. Interpretation reveals that dextral transtension in the Early to Middle Eocene created NNW-trending, en echelon, strike-slip faults linked by pull-apart basins, which locally contain a thickness of Eocene volcaniclastic rocks of >3 km. This structural pattern is consistent with regional observations that suggest the transfer of slip from the Yalakom fault to the north via a series of en echelon strike-slip faults. In the Middle to Late Eocene, faults associated with a change in the direction of stress, echoed by the north-trending right-lateral Fraser fault, reactivated and cut earlier structures. A simple model agrees with local observations, that northeast-directed compression was subparallel to the relic Cretaceous grain. Cretaceous rocks are discontinuous throughout the basin and may be remnants of a broader basin, or a number of contemporaneous basins, formed in a regional transpressional tectonic setting that caused northeast-directed thrusting along the eastern side of the Coast Plutonic Complex. Results suggest that thrusting affected most of the SE Nechako Basin, as observed across the Intermontane Belt to the northwest and southeast. The pattern of deposition of Neogene volcanic rocks of the Chilcotin Group was in part controlled by the Eocene structural grain, but we find no evidence of Neogene deformation.



PROMINE ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Retno Anjarwati ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji

The regional tectonic conditions of the KSK Contract of Work are located in the mid-Tertiary magmatic arc (Carlile and Mitchell, 1994) which host a number of epithermal gold deposits (eg, Kelian, Indon, Muro) and significant prospects such as Muyup, Masupa Ria, Gunung Mas and Mirah. Copper-gold mineralization in the KSK Contract of Work is associated with a number of intrusions that have occupied the shallow-scale crust at the Mesozoic metamorphic intercellular junction to the south and continuously into the Lower Tertiary sediment toward the water. This intrusion is interpreted to be part of the Oligocene arc of Central Kalimantan (in Carlile and Mitchell 1994) Volcanic rocks and associated volcanoes are older than intrusions, possibly aged Cretaceous and exposed together with all three contacts (Carlile and Mitchell, 1994) some researchers contribute details about the geological and mineralogical background, and some papers for that are published for the Beruang Kanan region and beyond but no one can confirm the genesis type of the Beruang Kanan region The mineralization of the Beruang Kanan area is generally composed by high yields of epithermal sulphide mineralization. with Cu-Au mineralization This high epithermal sulphide deposition coats the upper part of the Cu-Au porphyry precipitate associated with mineralization processes that are generally controlled by the structure



2020 ◽  
Vol 14 (5) ◽  
pp. 399-414
Author(s):  
I. P. Voinova ◽  
A. N. Didenko ◽  
A. V. Kudymov ◽  
A. Yu. Peskov ◽  
M. V. Arkhipov


1970 ◽  
Vol 107 (3) ◽  
pp. 235-247 ◽  
Author(s):  
W. E. Tremlett

SummaryEvidence of substantial dextral strike-slip displacements along the Caledonoid fault-set of northern Lleyn is revealed by the distribution of Pre-Cambrian igneous and metamorphic rocks, Ordovician volcanic rocks and Caledonian ‘early granodioritic’ intrusions. These apparently occurred prior to some smaller sinistral strike-slip movements which left total net dextral displacements of 91/2 km. Both types of movement were completed before the Caledonoid faults were disrupted by NNW sinistral faulting and more intrusions of Lower Old Red Sandstone age were emplaced.





2013 ◽  
Vol 233 ◽  
pp. 144-172 ◽  
Author(s):  
Kirsty Y. Ketchum ◽  
Larry M. Heaman ◽  
Gerry Bennett ◽  
David J. Hughes


Sign in / Sign up

Export Citation Format

Share Document