NOVEL SCHIFF'S BASES OF SUBSTITUTED 2-AMINO BENZOTHIAZOLES: DESIGN, SYNTHESIS AND ANTIMICROBIAL ACTIVITY

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (04) ◽  
pp. 18-26
Author(s):  
D. Sai Priya ◽  
◽  
S. G Kini ◽  
V. G Bhatt ◽  
E Rathi ◽  
...  

Novel Schiff’s bases bearing substituted 2-amino benzothiazole were synthesized by single step process through simple condensation of 2-amino benzothiazole and substituted benzaldehydes and further characterized by FTIR, 1HNMR, and Mass spectrometry data. Antimicrobial activity of compounds was performed by agar diffusion method against a panel of bacterial strains such as S. aureus, B. subtilis (Gram-positive bacteria), E. coli, P. aeruginosa (Gram-negative bacteria) and fungal strains such as C. albicans and A. niger. Compound S13 and S17 had shown potent antifungal activity against C. albicans and A. niger respectively among the novel Schiff’s base compounds when compared to standard, and S13 compound had only shown moderate antibacterial activity against S. aureus amongst all. Molecular docking study was carried out against C. albicans DHFR (Dihydrofolate Reductase) domain to confirm their activity.

2013 ◽  
Vol 66 (1) ◽  
pp. 84 ◽  
Author(s):  
Perumal Rajakumar ◽  
Ramar Padmanabhan ◽  
Chandrasekaran Ramprasath ◽  
Narayanasamy Mathivanan ◽  
Vaidhyanathan Silambarasan ◽  
...  

The synthesis and structural characterisation of novel imino cyclophanes incorporating various spacer units is described. All the imino cyclophanes exhibit comparable antibacterial activity against Gram positive (Bacillus subtillus, Staphylococcus aureus) and Gram negative (Escherchia coli, Klebsiella pneumonia) bacterial strains. The imino cyclophanes also exhibit good antifungal activity against human pathogenic fungus, Candida albicans.


2021 ◽  
Vol 32 (1) ◽  
pp. 6-21
Author(s):  
Jannatul Maowa ◽  
Asraful Alam ◽  
Kazi M. Rana ◽  
Sujan Dey ◽  
Anowar Hosen ◽  
...  

Abstract Nucleosides and their analogues are an important, well-established class of clinically useful medicinal agents that exhibit antiviral and anticancer activity. Thus, our research group has focused on the synthesis of new nucleoside derivatives that could be tested for their broad-spectrum biological activity. In this study, two new series of nucleoside derivatives were synthesized from uridine (1) through facile two-step reactions using the direct acylation method, affording 5’-O-acyl uridine derivatives in good yields. The isolated uridine analogs were further transformed into two series of 2’,3’-di-O-acyl derivatives bearing a wide variety of functionalities in a single molecular framework to evaluate their antimicrobial activity. The new synthesized compounds were characterized through physicochemical, elemental and spectroscopic analysis, and all were screened for their in vitro antimicrobial activity against selected human and plant pathogenic strains. The test compounds revealed moderate to good antibacterial and antifungal activities and were more effective against fungal phytopathogens than against bacterial strains, while many of them exhibited better antimicrobial activity than standard antibiotics. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests against all microorganisms were also conducted for five compounds based on their activity (6, 11, 13, 16, and 17). In addition, all the derivatives were optimized using density functional theory (DFT) B3LYP/6-31g+(d,p) calculations to elucidate their thermal and molecular orbital properties. A molecular docking study was performed using the human protein 5WS1 to predict their binding affinity and modes, and ADMET and SwissADME calculations confirmed the improved pharmacokinetic properties of the compounds. Besides, structure–activity relationship (SAR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) studies were also performed. Thus, the improvement of the bioactivity of these compounds is expected to significantly contribute to the design of more antimicrobial agents for therapeutic use in the future.


2019 ◽  
Vol 16 (5) ◽  
pp. 512-521 ◽  
Author(s):  
Nidhi Rani ◽  
Randhir Singh

Background: A series of novel substituted 2-mercaptoimidazoles was synthesised efficiently and in high yields using one-pot synthesis from m-hydroxyacetophenones. Methods: The structures of the newly synthesized compounds were established, their molecular activity was investigated against some bacteria and fungi were further validated using molecular docking study. Results: Reaction of o-hydroxyphenacylbromide (2) with substituted aniline and KSCN, in the presence of catalyst p-toluene sulfonic acid afforded 4(a-r) in good yield. The structure of compounds (4a-r) was confirmed by IR, NMR and MS. Conclusion: The compounds exhibited excellent antimicrobial potency against the tested microorganism.


2019 ◽  
Vol 15 (6) ◽  
pp. 659-675
Author(s):  
Mohamed F. Zayed ◽  
Sabrin R.M. Ibrahim ◽  
EL-Sayed E. Habib ◽  
Memy H. Hassan ◽  
Sahar Ahmed ◽  
...  

Background: Quinazolines and quinazolinones derivatives are well known for their important range of therapeutic activities. Objective: The study aims to carry out the synthesis of some derivatives of substituted fluoroquinazolinones based on structure-based design and evaluation of their antibacterial, antifungal, and anti-biofilm activities. Methods: Compounds were chemically synthesized by conventional methods. Structures were established on the basis of spectral and elemental analyses. The antimicrobial potential was tested against various microorganisms using the agar disc-diffusion method. MIC and MBC as well as anti-biofilm activity for the highly active compounds were assessed. Moreover, the computational studies were performed using Auto dock free software package (version 4.0) to explain the predicted mode of binding. Results: All derivatives (5-8), (10a-g), and (A-H) were biologically tested and showed significant antimicrobial activity comparable to the reference compounds. Compounds 10b, 10c, and 10d had a good MIC and MBC against Gram-positive bacteria, whereas 10b and 10d showed significant MIC and MBC against Gram-negative bacteria. However, compounds E and F exhibited good MIC and MBC against fungi. Compound 10c and 8 exhibited significant anti-biofilm activity towards S. aureus and M. luteus. Molecular docking study revealed a strong binding of these derivatives with their receptor-site and detected their predicted mode of binding. Conclusion: The synthesized derivatives showed promising antibacterial, antifungal, and antibiofilm activities. Modeling study explained their binding mode and showed strong binding affinity with their receptor-site. The highly active compounds 5 and 10c could be subjected to future optimization and investigation to be effective antimicrobial agents.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


Sign in / Sign up

Export Citation Format

Share Document