scholarly journals Electron Spectrum and Tunneling Current of the Toroidal and Helical Graphene Nanoribbon-Quantum Dots Contact

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Mikhail B. Belonenko ◽  
Nikolay G. Lebedev ◽  
Alexander V. Zhukov ◽  
Natalia N. Yanyushkina

We study the electron spectrum and the density of states of long-wave electrons in the curved graphene nanoribbon based on the Dirac equation in a curved space-time. The current-voltage characteristics for the contact of nanoribbon-quantum dot have been revealed. We also analyze the dependence of the specimen properties on its geometry.

Author(s):  
А.И. Михайлов ◽  
В.Ф. Кабанов ◽  
М.В. Гавриков

Abstract The mechanisms of current transport through indium antimonide quantum dots (QDs) have been examined by analyzing normalized differential tunneling current–voltage characteristics. Electron tunneling with the discrete spectrum of QDs taken into account has been studied. The positions of the first three levels of their electronic spectrum have been estimated. It has been demonstrated that the mechanism of the observed field emission from a film structure of colloidal indium antimonide QDs is characterized adequately by the Morgulis–Stratton theory in the range of electric-field intensities corresponding to the experimental conditions.


Author(s):  
Н.Д. Жуков ◽  
М.В. Гавриков ◽  
В.Ф. Кабанов ◽  
И.Т. Ягудин

By approximating the tunneling current-voltage characteristics (CVCs) of colloidal quantum dots (QDs) of narrow-gap semiconductors InSb and PbS, it is shown that in the one-electron mode, electron transport is determined by competing processes – emission from a quantum dot, injection into it and transport through it with current limitation by space charge. At voltages above 0.5 V, for single QD on the CVCs, regions of instability and current dip similar to the Coulomb gap were observed. Qualitative and numerical comparative estimates suggest that one-electron transport and current limitation similar to the Coulomb blockade are observed in the structure of a segregated set of quantum dots. Illumination of the sample with white light when measuring the CVCs breaks the Coulomb blockade, greatly increasing or decreasing the current, depending on the spectrum of the exciting light.


2021 ◽  
Author(s):  
Denice Feria ◽  
Sonia Sharma ◽  
Yu-Ting Chen ◽  
Zhi-Ying Weng ◽  
Kuo-Pin Chiu ◽  
...  

Abstract Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2 quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2 QDs. Investigating the NDR of WS2 QDs may promote the development of memory applications and emerging devices.


2018 ◽  
Vol 284 ◽  
pp. 182-187
Author(s):  
E.E. Blokhin ◽  
D.A. Arustamyan ◽  
L.M. Goncharova

In this paper we present the results of investigation of heterostructures with an array of InAs quantum dots grown on GaAs substrates with GaAs and AlGaAs front barriers for high-speed near-IR photodetectors. The thickness of the barrier layers did not exceed 30 nm. It is shown that the ion-beam deposition method makes it possible to grow quantum dots with lateral dimensions up to 30 nm and 15 nm height. The spectral dependences of the external quantum efficiency and dark current-voltage characteristics are investigated.


Author(s):  
Sergey V. Bakurskiy ◽  
Aleksey A. Neilo ◽  
Nikolay V. Klenov ◽  
Igor I Soloviev ◽  
Alexander A Golubov ◽  
...  

2018 ◽  
Vol 32 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Aiyun Yang ◽  
Caijuan Xia ◽  
Boqun Zhang ◽  
Jun Wang ◽  
Yaoheng Su ◽  
...  

By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl–diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0[Formula: see text] to 90[Formula: see text], the molecular devices exhibit very different current–voltage characteristics which can realize the on and off states of the molecular switch.


Sign in / Sign up

Export Citation Format

Share Document