scholarly journals Network Topology Models for Multihop Wireless Networks

2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
András Faragó

A typical feature of huge, random network topologies is that they are too large to allow a fully detailed description. Such enormous, complex network topologies are encountered in numerous settings and have generated many research investigations. Well-known examples are the Internet and its logical overlay networks, such as the World Wide Web as well as online social networks. At the same time, extensive and rapidly growing wireless ad hoc and sensor networks also lead to hard topology modeling questions. In the current paper, we primarily focus on large, random wireless networks but also consider Web and Internet models. We survey a number of existing models that aim at describing the network topology. We also exhibit common generalizations of various sets of models that cover a number of known constructions as special cases. We demonstrate that higher levels of abstraction, despite their very general nature, can still be meaningfully analyzed and offers quite useful and unique help in solving certain hard networking problems. We believe that this research area can and will generate further significant contributions to the analysis of very large networks.

2017 ◽  
Author(s):  
Marina Vegué ◽  
Rodrigo Perin ◽  
Alex Roxin

AbstractThe structure in cortical micro-circuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue we sought to reproduce the non-random features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity and those with broad degree distributions. To our surprise we found that all these qualitatively distinct topologies could account equally well for all reported non-random features, despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks which differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters which can be reliably estimated given small sample sizes, and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and non-spatial, hierarchical clustering.Significance StatementThe connectivity of cortical micro-circuits exhibits features which are inconsistent with a simple random network. Here we show that several classes of network models can account for this non-random structure despite qualitative differences in their global properties. This apparent paradox is a consequence of the small numbers of simultaneously recorded neurons in experiment: when inferred via small sample sizes many networks may be indistinguishable, despite being globally distinct. We develop a connectivity measure which successfully classifies networks even when estimated locally, with a few neurons at a time. We show that data from rat cortex is consistent with a network in which the likelihood of a connection between neurons depends on spatial distance and on non-spatial, asymmetric clustering.


2021 ◽  
Vol 13 (3) ◽  
pp. 76
Author(s):  
Quintino Francesco Lotito ◽  
Davide Zanella ◽  
Paolo Casari

The pervasiveness of online social networks has reshaped the way people access information. Online social networks make it common for users to inform themselves online and share news among their peers, but also favor the spreading of both reliable and fake news alike. Because fake news may have a profound impact on the society at large, realistically simulating their spreading process helps evaluate the most effective countermeasures to adopt. It is customary to model the spreading of fake news via the same epidemic models used for common diseases; however, these models often miss concepts and dynamics that are peculiar to fake news spreading. In this paper, we fill this gap by enriching typical epidemic models for fake news spreading with network topologies and dynamics that are typical of realistic social networks. Specifically, we introduce agents with the role of influencers and bots in the model and consider the effects of dynamical network access patterns, time-varying engagement, and different degrees of trust in the sources of circulating information. These factors concur with making the simulations more realistic. Among other results, we show that influencers that share fake news help the spreading process reach nodes that would otherwise remain unaffected. Moreover, we emphasize that bots dramatically speed up the spreading process and that time-varying engagement and network access change the effectiveness of fake news spreading.


2021 ◽  
Vol 11 (3) ◽  
pp. 1241
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

Microgrids constitute complex systems that integrate distributed generation (DG) and feature different operational modes. The optimal coordination of directional over-current relays (DOCRs) in microgrids is a challenging task, especially if topology changes are taken into account. This paper proposes an adaptive protection approach that takes advantage of multiple setting groups that are available in commercial DOCRs to account for network topology changes in microgrids. Because the number of possible topologies is greater than the available setting groups, unsupervised learning techniques are explored to classify network topologies into a number of clusters that is equal to the number of setting groups. Subsequently, optimal settings are calculated for every topology cluster. Every setting is saved in the DOCRs as a different setting group that would be activated when a corresponding topology takes place. Several tests are performed on a benchmark IEC (International Electrotechnical Commission) microgrid, evidencing the applicability of the proposed approach.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2020 ◽  
Vol 14 ◽  
Author(s):  
Paulo R. Protachevicz ◽  
Kelly C. Iarosz ◽  
Iberê L. Caldas ◽  
Chris G. Antonopoulos ◽  
Antonio M. Batista ◽  
...  

A great deal of research has been devoted on the investigation of neural dynamics in various network topologies. However, only a few studies have focused on the influence of autapses, synapses from a neuron onto itself via closed loops, on neural synchronization. Here, we build a random network with adaptive exponential integrate-and-fire neurons coupled with chemical synapses, equipped with autapses, to study the effect of the latter on synchronous behavior. We consider time delay in the conductance of the pre-synaptic neuron for excitatory and inhibitory connections. Interestingly, in neural networks consisting of both excitatory and inhibitory neurons, we uncover that synchronous behavior depends on their synapse type. Our results provide evidence on the synchronous and desynchronous activities that emerge in random neural networks with chemical, inhibitory and excitatory synapses where neurons are equipped with autapses.


Author(s):  
Hui Cheng

In recent years, the static shortest path (SP) routing problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks (ANNs), genetic algorithms (GAs), particle swarm optimization (PSO), etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile ad hoc network (MANET), wireless mesh network (WMN), etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, that is, the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. This paper proposes to use two types of hyper-mutation GAs to solve the dynamic SP routing problem in MANETs. The authors consider MANETs as target systems because they represent new generation wireless networks. The experimental results show that the two hyper-mutation GAs can quickly adapt to the environmental changes (i.e., the network topology change) and produce good solutions after each change.


Sign in / Sign up

Export Citation Format

Share Document