scholarly journals Starch Granule and Protein Accumulation during Seed Development of Ginkgo biloba L.

ISRN Botany ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Biao Jin ◽  
Yan Xie ◽  
Yan Lu ◽  
Di Wang ◽  
Min Zhang ◽  
...  

We investigated starch and protein formation and accumulation in the seed of Ginkgo biloba L. In the testa, starch granules and protein bodies (PBs) started to form and accumulate 30 days after pollination; they decreased in size and completely disappeared before maturity. In the endosperm, starch granules began to accumulate 45 days after pollination, and the number and size of starch granules increased gradually within 65 days after pollination. Starch granules, which were mainly produced in plastids, proliferated mainly by constricting in the center and dividing to form smaller granules. Before harvest, there were ellipsoidal or irregularly shaped types, including A-type starch granules and some B- and C-type starch granules. In addition, PBI and PBII formed mainly in the outermost cells of the endosperm. However, the starch granules and protein bodies in endosperm cells around the embryo disappeared completely. The embryo cells contained many organelles, C-type starch granules, and PBI-type protein bodies. These results suggested that the starch granules were A-, B-, and C-types, and the protein bodies were PBI- and PBII-types in G. biloba. In addition, there were many significant differences in the formation, accumulation, and types of starch granules and protein bodies among the testa, endosperm, and embryo.

2012 ◽  
Vol 550-553 ◽  
pp. 1513-1521
Author(s):  
Sirirat Thothong ◽  
Klanarong Sriroth ◽  
Rattana Tantatherdtam ◽  
Amnat Jarerat

To improve the miscibility of native rice starch granules and poly(butylene adipate-co-terephthalate)(PBAT), rice starch was hydrolyzed by a mixture of α-amylase and amyloglucosidase. The obtained porous rice granular starch was then mechanically blended with PBAT by single screw extruder. Many pits and holes on the surface of starch granules were observed by scanning electron microscopy (SEM). The rough surface of the rice starch granules improved the compatibility of the polymers in the blends, which consequently increased the tensile strength and the elongation at break. In addition, SEM also revealed that the porous granules were homogeneously distributed in the polymer matrix with no appearance of gaps.


2017 ◽  
pp. 67
Author(s):  
Hilda Araceli Zavaleta-Mancera

The seed of the Mexican species, Casimiroa edulis Llave et Lexarza is valued for medicinal purposes. We have studied its anatomy in different stages of development from ovule to mature seed. We applied general staining with safranin and fast green and specific staining for the detection of starch, lipids, lignin, polyphenols, and proteins. Embryo and seed development was also evaluated on the basis of volume. The ovule is sessile, bitegmic, crassinucellate, hemianatropous, with a nucellar curvature of 30-40º and a large hilum. The seed develops a large pachychalaza that covers approximately 70% of the surface. The testa is thin, nonlignified and tanniferous. The mature embryo occupies about 90% of the whole volume of the seed and contains lysigenous oil glands, starch grains and protein bodies. The radicle is not directed exactly at the micropyle. lt is located in the dorsal micropylar third of the seed. Casimiroa edulis had been described as lacking endosperm, but in reality the mature seed has a small amount of endosperm under the pachychalaza.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5859
Author(s):  
Qingting Liu ◽  
Yuan Zhou ◽  
Joerg Fettke

Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.


2019 ◽  
Vol 71 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Tansy Chia ◽  
Marcella Chirico ◽  
Rob King ◽  
Ricardo Ramirez-Gonzalez ◽  
Benedetta Saccomanno ◽  
...  

Abstract In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.


1992 ◽  
Vol 6 (2) ◽  
pp. 317-321 ◽  
Author(s):  
Rick A. Boydston

Experimental controlled release starch granules (CRSG) containing 5.3% a.i. (w/w) norflurazon or 6% a.i. (w/w) simazine retarded the leaching of both herbicides in loamy sand soil columns when compared to commercial formulations of norflurazon [80% (w/w) dry flowable] or simazine [90% (w/w) water dispersible granule]. Barley bioassays indicated norflurazon and simazine remained in the surface 0 to 2.5 cm of soil when applied as CRSG formulations and moved to a depth of 15 cm when applied as commercial dry formulations and leached with 6 cm of water. CRSG placed on pre-wetted soil columns began to release norflurazon by 7 d at 25 C or 14 d at 15 C, and subsequent leaching moved norflurazon beyond the top 2.5 cm of the soil column.


2003 ◽  
Vol 81 (6) ◽  
pp. 531-540 ◽  
Author(s):  
Gurusamy Chinnasamy ◽  
Arya Kumar Bal

The developmental patterns of seed, seed coat, and hardseededness were studied in naturally growing crop plants of beach pea (Lathyrus maritimus (L.) Bigel.) at six reproductive growth stages (S1–S6). Grass pea (Lathyrus sativus L.) seeds were used for comparison in some experiments. The accumulation of fresh and dry weight in pod shell and seed of beach pea and pod shell of grass pea followed an almost sigmoidal pattern. However, grass pea seed showed a linear pattern of weight accumulation. During maturation, moisture content of pod shells and seeds decreased because of dehydration. Beach pea seeds were able to germinate precociously at S4. Seeds collected between S1 and S3 failed to germinate because of immaturity, whereas the development of hard seed coats prevented germination in seeds gathered at S5 and S6. An imbibition test revealed that hardseededness completely prevented water absorption of S5 and S6 seeds even after 24 days of soaking. In grass pea, precocious seed germination was observed at S3. However, speed of germination, germination percentage, seedling length and dry weight increased as seeds approached maturity. Lipid and protein accumulation in seeds of both species increased progressively with maturity and showed a positive correlation with seed weight accumulation. In both beach pea and grass pea seeds, S6 was identified as a physiological maturity stage.Key words: beach pea, grass pea, hard seed, imbibition, Lathyrus, seed coat, seed development, water impermeability.


1995 ◽  
Vol 73 (7) ◽  
pp. 982-990 ◽  
Author(s):  
R. D. Hill ◽  
S. M. Gubbels ◽  
L. Boros ◽  
M. J. Sumner ◽  
A. W. MacGregor

The location of an endogenous α-amylase/subtilisin inhibitor in developing and germinating barley (Hordeum vulgare, cv. Bonanza) was determined using immunohistochemical techniques. The inhibitor was found within protein bodies of cells containing starch granules in the starchy endosperm and embryo of developing caryopses. It could be detected as early as 2 weeks postanthesis in both organs. Upon germination, inhibitor was released from protein bodies, resulting in increased detection of the protein in regions of the starchy endosperm in which storage mobilization was occurring. Antibodies to α-amylase revealed large quantities of this protein in the same regions. Key words: α-amylase, α-amylase/subtilisin inhibitor, barley, germination, kernel development, starch.


1959 ◽  
Vol 12 (2) ◽  
pp. 146 ◽  
Author(s):  
LH May ◽  
MS Buttrose

Types, numbers, volumes, and weights of starch granules in the barley endosperm were measured at different times from anthesis to maturity. The formation of two types of granule was confirmed: the first (type A) was initiated until 15 days after anthesis; the second (type B) between 18 and 30 days. At maturity there were approximately 10 times as many type B granules as type A, although the latter made up 90 per cent. of the total granule volume. There was a linear relationship between starch granule and endosperm volume throughout kernel development, while the rate of increase in volume per unit granule volume was the same, irrespective of granule size, at anyone time. Starch weight increased as endosperm dry weight increased although the precise form of this relationship is in doubt. The interrelationships between starch granule weight and volume, and also endosperm dry weight and volume, suggest that both starch granules and endosperm increase in density during development.


Sign in / Sign up

Export Citation Format

Share Document