scholarly journals OPTIMIZATION OF A PETROLEUM FRACTIONAL DISTILLATION COLUMN USING DISTOP CALIBRATION AND STATISTICAL METHODS

2021 ◽  
Vol 14 (04) ◽  
pp. 221-237
Author(s):  
M. B. M. M. Nobrega ◽  
A. S. Zimmermann ◽  
S. Mattedi ◽  
O. Chiavone-Filho

Distillation columns are important separation equipment that comprise most of the investment needed in a petroleum refining plant. Utilities and energy demands, though, are a concerning factor in the current economic and environmental scenario. The present work proposes a methodology to optimize the energy consumption of a crude oil distillation column using the Distop Calibration technique that allows faster convergence than the Tray-to-Tray method. The methodology presented involves process simulation, sensitivity analysis, factorial design, and the use of response surface methodology. Results show that it is possible to achieve significant gains by changing feed temperature and rectifying vapor flow, causing a relevant reduction in energy consumption. Hence, the methodology can be used as an optimization tool to increase energetic efficiency.

2017 ◽  
Vol 68 (1) ◽  
pp. 28-34
Author(s):  
Marilena Nicolae

Complex systems of distillation columns were intensively studied within last decades and continue to show interest for researchers and for industrial application. The first designed complex distillation column with heat integration was the Petlyuk column and the development of complex systems of columns continued up to dividing wall columns (DWC) which are increasingly being used in industry. DWC are usually used to separate three products, components or fractions, from a multicomponent mixture. This study attempts to find the best fitting of complex systems of columns in the process of propylene oxide (PO) obtaining using the method of propylene chlorination and presents a proposed variant of separation which can lead to a reduced energy consumption. The fabrication of PO through this method lead to a multicomponent mixture which is separated in two main products: propylene oxide (PO) and heavier components containing as valuable compound 1,2 dichloropropane (DCP). Both products, PO and DCP, have important uses in the chemical industry. The study of complex schemes of columns used for PO separation was assessed by simulation using a simplified method based on Fenske � Underwood - Gilliland correlation (F.U.G.) [1]. The systems studied in this work include the following configurations of columns: column with prefractionator, column with partially coupled prefractionator, the Petlyuk column, the dividing wall column, column with side striper, column with side rectifier, the direct and the indirect sequence.


Author(s):  
Fatemeh Safari ◽  
Arjomand Mehrabani-Zeinabad

Distillation is one of the most widely used separation units that consumes the largest amount of energy in chemical and petrochemical industries. Heat integration of thermally coupled distillation column is one of the methods to reduce energy-consumption. This paper provides a comparison between two simple columns with direct configuration and thermally coupled distillation column with direct sequence backward integration arrangement for separation of a ternary mixture based on energy-consumption. The influence of changing numbers of first and second column trays on heating and cooling rate of each column are investigated based on a developed mathematical model using conservation law of mass and energy and bubble-point method. The average relative error between calculated and industrial temperatures in some trays is about 0.74%. The condenser duty of high pressure column is about 9.73×109 kJ/h to provide heating of low pressure column. According to the simulation results, the thermally coupled construction saves energy about 50% more.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Muddu Madakyaru ◽  
Mohamed N. Nounou ◽  
Hazem N. Nounou

Proper control of distillation columns requires estimating some key variables that are challenging to measure online (such as compositions), which are usually estimated using inferential models. Commonly used inferential models include latent variable regression (LVR) techniques, such as principal component regression (PCR), partial least squares (PLS), and regularized canonical correlation analysis (RCCA). Unfortunately, measured practical data are usually contaminated with errors, which degrade the prediction abilities of inferential models. Therefore, noisy measurements need to be filtered to enhance the prediction accuracy of these models. Multiscale filtering has been shown to be a powerful feature extraction tool. In this work, the advantages of multiscale filtering are utilized to enhance the prediction accuracy of LVR models by developing an integrated multiscale LVR (IMSLVR) modeling algorithm that integrates modeling and feature extraction. The idea behind the IMSLVR modeling algorithm is to filter the process data at different decomposition levels, model the filtered data from each level, and then select the LVR model that optimizes a model selection criterion. The performance of the developed IMSLVR algorithm is illustrated using three examples, one using synthetic data, one using simulated distillation column data, and one using experimental packed bed distillation column data. All examples clearly demonstrate the effectiveness of the IMSLVR algorithm over the conventional methods.


2020 ◽  
Vol 24 (6) ◽  
pp. 63-77
Author(s):  
Natthiyar Aeamsuksai ◽  
Thirawat Mueansichai ◽  
Pongtorn Charoensuppanimit ◽  
Pattaraporn Kim-Lohsoontorn ◽  
Farid Aiouache ◽  
...  

This research investigates the process simulation of sodium methoxide (NaOCH3) synthesis from methanol (CH3OH) and sodium hydroxide (NaOH) under three synthesis schemes: schemes A, B, and C. Scheme A consisted of one equilibrium reactor and two distillation columns, scheme B one reactive distillation column and one distillation column, and scheme C one reactive distillation column and pervaporation membrane. The simulation parameters included CH3OH/NaOH feed flow ratio (1.2-1.6), number of stages (5-30), bottom flow rate (1400-1600 kg/h), and feed stage location (5, 10, 15, 20, 21, 22, 23, and 24). The simulation parameters were varied to determine the optimal NaOCH3 synthetic conditions under different schemes with 0.01 wt% water content, maximum 45 wt% NaOCH3, and the lowest total energy consumption. The results showed that scheme C had the lowest total energy consumption (34.25 GJ/h) under the optimal synthetic condition of 1.4 for CH3OH/NaOH feed flow ratio, 25 for the number of stages, 1550 kg/h for the bottom flow rate, and the 24th feed stage location, with the NaOCH3 flow rate of 675 kg/h. Scheme C thus holds promising potential as an energy-efficient alternative for synthesis of NaOCH3. The novelty of this research lies in the use of pervaporation membrane in place of distillation column to separate CH3OH from water and to lower energy consumption and capital cost.


2014 ◽  
Vol 962-965 ◽  
pp. 1779-1781
Author(s):  
Ying Chun Yang

Rapid economic growth in China induces higher energy consumption. This article establishes a primary energy consumption model. Finally, this article puts forward energy policies for ensuring economic growth and simultaneously achieving emission reduction and energy conversation.


2005 ◽  
Vol 4 (1) ◽  
pp. 76 ◽  
Author(s):  
S. H. B. Faria ◽  
R. J. Zemp

In this work the temperature-enthalpy profile and the exergy loss profile are used together to improve thermodynamic efficiency of distillation columns, by identifying possible benefits of using side exchangers. The method proposed is to compute the exergy loss profile and to analyse the distribution of the losses across the column stages. The present work aims at applying the stage-by-stage exergy analysis to the distillation of non-ideal mixtures, e.g. methanol/water. For these systems the use of thermodynamic excess properties is required: Gibbs free energy for phase equilibrium and enthalpy of solution for energy balance. Initial studies showed that the enthalpy of solution has a small effect on the overall energy balance of the distillation column, but a significant impact on the exergy loss profiles. Some profiles even showed a violation of the second law of thermodynamics, with entropy being destroyed on some stages, clearly indicating that a wrong approach to exergy calculation was being used.A model for exergy calculations of non-ideal solutions is presented. The exergy values so computed are then checked by a consistency test, using the reversible column profile. Finally, the exergy procedures are used to study a typical methanol/water distillation columns, where the exergy profiles are used to identify scope for intermediate heat exchange.


2012 ◽  
Author(s):  
Khairiyah Mohd. Yusof ◽  
Fakhri Karray ◽  
Peter L. Douglas

This paper discusses the development of artificial neural network (ANN) models for a crude oil distillation column. Since the model is developed for real time optimisation (RTO) applications they are steady state, multivariable models. Training and testing data used to develop the models were generated from a reconciled steady-state model simulated in a process simulator. The radial basis function networks (RBFN), a type of feedforward ANN model, were able to model the crude tower very well, with the root mean square error for the prediction of each variable less than 1%. Grouping related output variables in a network model was found to give better predictions than lumping all the variables in a single model; this also allowed the overall complex, multivariable model to be simplified into smaller models that are more manageable. In addition, the RBFN models were also able to satisfactorily perform range and dimensional extrapolation, which is necessary for models that are used in RTO.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Atia E. Khalifa

Abstract A comprehensive experimental investigation is conducted to evaluate the performance of a new flux-enhanced compact water gap membrane distillation (WGMD) module design with gap circulation and cooling for water desalination. The new design uses a separate circulation loop to circulate the gap water, and a built-in heat exchanger coil implanted inside the coolant stream channel for cooling the circulated gap water. The WGMD modules with circulation and with circulation and cooling are compared with conventional WGMD without circulation. Variations of distillate flux, temperatures, and energy consumption are presented at different design operating conditions. Circulation and cooling of the gap water greatly enhance the output flux due to gap water motion and increase the temperature difference between membrane surfaces. However, the enhancement in flux was achieved at the expense of energy consumption. Circulation and cooling of gap water are more effective with bigger gap widths. Feed flowrate showed significant effects with gap water circulation and cooling. The electrical specific energy consumption (SEC) showed the best value of 7.9 and 8.8 kWh/m3 at a feed temperature of 70 °C for both conventional WGMD and WGMD with circulation modules, while the best value of SEC for the WGMD module with gap circulation and cooling was 9.4 kWh/m3 at a feed temperature of 80 °C.


Sign in / Sign up

Export Citation Format

Share Document