scholarly journals The Impact Assessment of Climate Change on Building Energy Consumption in Poland

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4805
Author(s):  
Shu Chen ◽  
Zhengen Ren ◽  
Zhi Tang ◽  
Xianrong Zhuo

Globally, buildings account for nearly 40% of the total primary energy consumption and are responsible for 20% of the total greenhouse gas emissions. Energy consumption in buildings is increasing with the increasing world population and improving standards of living. Current global warming conditions will inevitably impact building energy consumption. To address this issue, this report conducted a comprehensive study of the impact of climate change on residential building energy consumption. Using the methodology of morphing, the weather files were constructed based on the typical meteorological year (TMY) data and predicted data generated from eight typical global climate models (GCMs) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) from 2020 to 2100. It was found that the most severe situation would occur in scenario RCP8.5, where the increase in temperature will reach 4.5 °C in eastern Australia from 2080–2099, which is 1 °C higher than that in other climate zones. With the construction of predicted weather files in 83 climate zones all across Australia, ten climate zones (cities)—ranging from heating-dominated to cooling-dominated regions—were selected as representative climate zones to illustrate the impact of climate change on heating and cooling energy consumption. The quantitative change in the energy requirements for space heating and cooling, along with the star rating, was simulated for two representative detached houses using the AccuRate software. It could be concluded that the RCP scenarios significantly affect the energy loads, which is consistent with changes in the ambient temperature. The heating load decreases for all climate zones, while the cooling load increases. Most regions in Australia will increase their energy consumption due to rising temperatures; however, the energy requirements of Adelaide and Perth would not change significantly, where the space heating and cooling loads are balanced due to decreasing heating and increasing cooling costs in most scenarios. The energy load in bigger houses will change more than that in smaller houses. Furthermore, Brisbane is the most sensitive region in terms of relative space energy changes, and Townsville appears to be the most sensitive area in terms of star rating change in this study. The impact of climate change on space building energy consumption in different climate zones should be considered in future design strategies due to the decades-long lifespans of Australian residential houses.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 354
Author(s):  
Ludovica Maria Campagna ◽  
Francesco Fiorito

The body of literature on climate change impacts on building energy consumption is rising, driven by the urgency to implement adaptation measures. Nevertheless, the multitude of prediction methodologies, future scenarios, as well as climate zones investigated, results in a wide range of expected changes. For these reasons, the present review aims to map climate change impacts on building energy consumption from a quantitative perspective and to identify potential relationships between energy variation and a series of variables that could affect them, including heating and cooling degree-days (HDDs and CDDs), reference period, future time slices and IPCC emission scenarios, by means of statistical techniques. In addition, an overview of the main characteristics of the studies related to locations investigated, building types and methodological approaches are given. To sum up, global warming leads to: (i) decrease in heating consumptions; (ii) increase in cooling consumption; (iii) growth in total consumptions, with notable differences between climate zones. No strong correlation between the parameters was found, although a moderate linear correlation was identified between heating variation and HDDs, and total variation and HDDs. The great variability of the collected data demonstrates the importance of increasing specific impact studies, required to identify appropriate adaptation strategies.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6188
Author(s):  
Marta Videras Rodríguez ◽  
Antonio Sánchez Cordero ◽  
Sergio Gómez Melgar ◽  
José Manuel Andújar Márquez

The growing concern about global climate change extends to different professional sectors. In the building industry, the energy consumption of buildings becomes a factor susceptible to change due to the direct relationship between the outside temperature and the energy needed to cool and heat the internal space. This document aims to estimate the energy consumption of a Minimum Energy Building (MEB) in different scenarios—past, present, and future—in the subtropical climate typical of seaside cities in Southern Spain. The building energy consumption has been predicted using dynamic building energy simulation software tools. Projected climate data were obtained in four time periods (Historical, the 2020s, 2050s, and 2080s), based on four emission scenarios defined by the Intergovernmental Panel on Climate Change (IPCC): B1, B2, A2, A1F1. This methodology has been mathematically complemented to obtain data in closer time frames (2025 and 2030). In addition, different mitigation strategies have been proposed to counteract the impact of climate change in the distant future. The different energy simulations carried on show clearly future trends of growth in total building energy consumption and how current building designers could be underestimating the problem of air conditioning needs in the subtropical zone. Electricity demand for heating is expected to decrease almost completely, while electricity demand for cooling increases considerably. The changes predicted are significant in all scenarios and periods, concluding an increase of between 28–51% in total primary energy consumption during the building life cycle. The proposed mitigation strategies show improvements in energy demands in a range of 11–14% and they could be considered in the initial stages of project design or incorporated in the future as the impact of climate change becomes more pronounced.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Author(s):  
Nimra Kanwal ◽  
Nuhzat Khan

Buildings are the most important part of development activities, consumed over one-thirds of the global energy. Household used the maximum energy around the world, likewise in Pakistan residential buildings consumed about half of total energy (45.9% per year). The study aims to analyze the impact of building design on climate of Metropolitan City Karachi, Pakistan and to evaluate the change in urbanization patterns and energy consumption in the buildings. To have better understanding of the issues correlations was established amongst population, urbanization patterns, green area, number of buildings (residential and commercial), building design, energy consumption and metrological records (climate change parameters) by collecting the data from the respective departments. With the help of the collected data amount of carbon dioxide was estimated. The results reveled that during last 36 years the urban population of Karachi increased exponentially from 5,208,000 (1981) to 14,737,257 (2017) with increase in urbanized area from 8.35 km2 (1946) to 3,640 km2 (2017) that may led to reduce the green area of the city from 495,000 hectors (1971) to 100,000 hectors (2015). Moreover, the building’s design and numbers are being changed from 21 high-rise buildings (2009) to 344 (2017). It may be concluded that change in temperature pattern and climatic variability of the city may be due to increase in population and change in lifestyle that lead to high energy consumption that is prime source of increased in CO2 emission in the environment of Karachi city, However, Greenhouse Gases (GHG) releases are much lower than the levels reported from metropolitan cities around the world.


Author(s):  
José Antonio Orosa ◽  
Diego Vergara ◽  
Feliciano Fraguela ◽  
Antonio Masdías-Bonome

In the present chapter, a new tool was designed to find a better alternative for improving building energy consumption in the next years. In this sense, in the first stage of this calculation procedure, ISO Standard 13790 calculation procedure was developed in accordance with Monte Carlo method and results showed the probability of energy consumption as a Weibull model. Furthermore, a map of different Weibull models in accordance with different input parameters and future climate change effect was developed as a future building design guide. This tool defines the probability of energy consumption of an existing building, or a building that is being designed today and in the near future, preventing the climate change effect. More applications at the time of building retrofitting and healthy indoor ambiences are proposed.


Sign in / Sign up

Export Citation Format

Share Document