scholarly journals A simple approach towards estimating solar irradiance

MAUSAM ◽  
2022 ◽  
Vol 44 (3) ◽  
pp. 239-242
Author(s):  
H.P. DAS ◽  
A.D. PUJARI

Solar radiation is or vital interest in characterizing an area with respect to its agricultural potential. However, these are not readily available for a large network. An attempt. has been made to deduce solar irradiance from climatic data, such as temperature range.   Based on daily data of Pune for 1986-90, a relationship has been developed between atmospheric transmittance and the daily range of air temperature. The model developed has been tested on independent data and found to give fairly accurate estimation of solar irradiance. Nearly 70% of the variation in daily solar radiation could be explained by this simple method. The effect of solar irradiance on microclimate has also been discussed. The model developed has been tested for Hyderabad and Calcutta and found to give encouraging results.

2021 ◽  
Author(s):  
Basil Psiloglou ◽  
Harry D. Kambezidis ◽  
Konstantinos V. Varotsos ◽  
Dimitris G. Kaskaoutis ◽  
Dimiitris Karagiannis ◽  
...  

<p>It is generally accepted that a climatic data set of meteorological measurements with true sequences and real interdependencies between meteorological variables is needed for a representative climate simulation. In the late 1970s the Typical Meteorological Year (TMY) concept was introduced in USA as a design tool for approximating expected climate conditions at specific locations, at a time when computers were much slower and had less memory than today. A TMY is a collation of selected weather data for a specific location, listing usually hourly values of meteorological and solar radiation elements for one-year period. The values are generated from a data bank much longer than a year in duration, at least 10 years. It is specially selected so that it presents the range of weather phenomena for the location in question, while still giving annual averages that are consistent with the long-term averages for the specific location. Each TMY data file consists of 12 months chosen as most “typical“ among the years present in the long-term data set. Although TMYs do not provide information about extreme events and do not necessarily represent actual conditions at any given time, they still reflect all the climatic information of the location. TMY sets remain in popular use until today providing a relatively concise data set from which system performance estimates can be developed, without the need of incorporating large amounts of data into simulation models. </p><p>TMY sets for 33 locations in Greece distributed all over the country were developed, covering for the first time all climatic zones, for both historical and future periods. Historical TMY sets generation was based on meteorological data collected from the Hellenic National Meteorological Service (HNMS) network in Greece in the period 1985-2014, while the corresponding total solar radiation values have been derived through the Meteorological Radiation Model (MRM).</p><p>Moreover, the generation of future TMY sets for Greece was also performed, for all 33 locations. To this aim, bias adjusted daily data for the closest grid point to the HNMS station’s location were employed from the RCA4 Regional Climate Model of the Swedish Meteorological and Hydrological Institute (SMHI) driven by the Earth system model of the Max Planck Institute for Meteorology (MPI-M). Simulations were carried out in the framework of the EURO-CORDEX modeling experiment, with a horizontal RCA4 model resolution of 0.11<sup>o</sup> (~12 x 12 km). We used daily data for four periods: the 1985-2014 used as reference period and the 2021-2050, 2046-2070 and 2071-2100 future periods under RCP4.5 and RCP8.5 scenarios. </p><p>This work was carried out in the framework of the “Development of synergistic and integrated methods and tools for monitoring, management and forecasting of environmental parameters and pressures” (KRIPIS-THESPIA-II) Greek national funded project.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Adekunle Ayodotun Osinowo ◽  
Emmanuel Chilekwu Okogbue ◽  
Stephen Bunmi Ogungbenro ◽  
Olugbenga Fashanu

Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF) was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794) over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.


Author(s):  
Lingjiang Huang ◽  
Jian Kang

AbstractThe solar incidence on an indoor environment and its occupants has significant impacts on indoor thermal comfort. It can bring favorable passive solar heating and can result in undesired overheating (even in winter). This problem becomes more critical for high altitudes with high intensity of solar irradiance, while received limited attention. In this study, we explored the specific overheating and rising thermal discomfort in winter in Lhasa as a typical location of a cold climate at high altitudes. First, we evaluated the thermal comfort incorporating solar radiation effect in winter by field measurements. Subsequently, we investigated local occupant adaptive responses (considering the impact of direct solar irradiance). This was followed by a simulation study of assessment of annual based thermal comfort and the effect on energy-saving potential by current solar adjustment. Finally, we discussed winter shading design for high altitudes for both solar shading and passive solar use at high altitudes, and evaluated thermal mass shading with solar louvers in terms of indoor environment control. The results reveal that considerable indoor overheating occurs during the whole winter season instead of summer in Lhasa, with over two-thirds of daytime beyond the comfort range. Further, various adaptive behaviors are adopted by occupants in response to overheating due to the solar radiation. Moreover, it is found that the energy-saving potential might be overestimated by 1.9 times with current window to wall ratio requirements in local design standards and building codes due to the thermal adaption by drawing curtains. The developed thermal mass shading is efficient in achieving an improved indoor thermal environment by reducing overheating time to an average of 62.2% during the winter and a corresponding increase of comfort time.


Parasitology ◽  
2009 ◽  
Vol 136 (4) ◽  
pp. 393-399 ◽  
Author(s):  
H. GÓMEZ-COUSO ◽  
M. FONTÁN-SAINZ ◽  
J. FERNÁNDEZ-ALONSO ◽  
E. ARES-MAZÁS

SUMMARYSpecies belonging to the generaCryptosporidiumare recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated withCryptosporidium parvumoocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37–50°C), on the excystation ofC. parvumin the absence of other stimuli. In samples exposed to 40–48°C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53·81% of excystation was obtained on exposure of the water to a temperature of 46°C for 12 h (versus8·80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19·38%versus100%). The results demonstrate the important effect of the temperature on the excystation ofC. parvumand therefore on its viability and infectivity.


2016 ◽  
Vol 824 ◽  
pp. 477-484 ◽  
Author(s):  
Miroslav Čekon ◽  
Richard Slávik ◽  
Peter Juras

Solar radiation exposure and its monitoring does have not only the importance for climate science and meteorology however is equally of highly relevant use for the field of Building Science as primarily those of analyzing thermal aspects in building physics. Here the measuring of solar irradiance by means of well-established solar instruments can be applied whose advances have been undergoing steep progress. Currently, a silicon photodiode element, as a truly obtainable form, may have a feasible exploitation in the field of building applications concerning the solar radiant flux quantifying. It represents a small optoelectronic element and has a several exploitable advantages. The paper presents a perspective alternative to monitor solar irradiance. Own measurement assembly is proposed and introduced. Initial in-situ measurements are performed and final comparability with existing commercial solar instruments is presented. An obtained correlation with existing types demonstrates its applicability to the field of building science and solar energy.


2018 ◽  
Vol 81 ◽  
pp. 93-106 ◽  
Author(s):  
Antonio J. Gutiérrez-Trashorras ◽  
Eunice Villicaña-Ortiz ◽  
Eduardo Álvarez-Álvarez ◽  
Juan M. González-Caballín ◽  
Jorge Xiberta-Bernat ◽  
...  

2009 ◽  
Vol 2 (1) ◽  
pp. 19-33
Author(s):  
Joanna Uscka-Kowalkowska

Abstract The present study deals with the changing amount of incoming direct solar radiation and the optical state of the atmosphere in Mikołajki in the years 1971-1980 and 1991-2000. The highest level of solar irradiance in these two decades occurred on 23rd June 1977 and amounted to 1043.9 W·m-2. Compared to the first decade analysed, the percentage of the solar constant reaching the Earth in the second decade was higher. The spectral structure of the radiation also changed - the share of the shortest waves (λ<525 nm) increased, whereas the amount of waves with a wavelength of 710 nm or more decreased. In both study periods the annual course of solar extinction (expressed in terms of Linke’s turbidity factor) turned out to have been typical, with the highest values in summer and the lowest in winter. In the years 1991-2000, in all seasons, a lower atmospheric turbidity was observed in comparison with the years 1971-1980. The atmospheric turbidity was also analysed with relation to the air masses. In both decades in question the lowest turbidity occurred in arctic air masses and the highest in tropical air masses. An improved optical state of the atmosphere was observed in all considered air masses, though the biggest decrease in turbidity was found in polar air masses, particularly in the polar maritime old air (TLAM2 dropped by 0.75) and polar continental air (by 0.70).


Tropics ◽  
2005 ◽  
Vol 14 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Eiji NAWATA ◽  
Yoshikatsu NAGATA ◽  
Arimichi SASAKI ◽  
Kenji IWAMA ◽  
Tetsuo SAKURATANI

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12373
Author(s):  
Lili Jin ◽  
Sasa Zhou ◽  
Qing He ◽  
Alim Abbas

The characteristics of solar radiation and the influence of sand and dust on solar radiation in the northern margin of Taklimakan Desert were analyzed using radiation observation data from 2018. The results showed that the annual total radiation, direct radiation, and scattered radiation at Xiaotang were 5,781.8, 2,337.9, and 3,323.8 MJ m−2, respectively. The maximum monthly total radiation, direct radiation, and scattered radiation were observed in July (679.8 MJ m−2), August (317.3 MJ m−2), and May (455.7 MJ m−2), respectively. The aerosol optical depth corresponded well with the scattered radiation, and the maximum value was in May. Further analysis showed a significant correlation between the total radiation and solar height angle under different weather conditions. Under the same solar height angle, total radiation was higher during clear days but lower on sandstorm days. Calculation of atmospheric transmittance showed that the average atmospheric transmittance on a clear day was 0.67; on sand-and-dust days, it was 0.46. When the atmospheric transmittance was 0.5, the increase in scattering radiation by aerosol in the air began to decrease. Probability analysis of radiation indicated the following probabilities of total radiation <500 W m−2 occurring on clear, floating-dust, blowing-sand, and sandstorm days: 67.1%, 76.3%, 76.1%, and 91.8%, respectively. Dust had the greatest influence on direct radiation; the probabilities of direct radiation <200 W m−2occurring on clear, floating-dust, blowing-sand, and sandstorm days were 44.5%, 93.5%, 91.3%, and 100%, respectively, whereas those of scattered radiation <600 W m−2were 100%, 99.1%, 98.1%, and 100%, respectively. Therefore, the presence of dust in the air will reduce scattered radiation.


Author(s):  
Ojo Samuel ◽  
Alimi Taofeek Ayodele ◽  
Amos Anna Solomon

Mathematical models have been very useful in reducing challenges encountered by researchers due to the inability of having solar radiation data or lack of instrumental sites at every point on the Earth.  This work aimed at investigating the prediction performance of Hargreaves-Samani’s model in estimating global solar radiation (GSR) out of the many other empirical models so far formulated for this purpose. This model basically uses maximum and minimum temperature data and basically used in mid-latitudes. The paper attempts to assess the predictive performance of Hargreaves-Samani’s model in the Savanna region using Yola as a case study. Estimated values of GSR from one month data adopted from the Meteorological station of the Department of Geography, Federal University of Technology, Yola, Nigeria was used for this purpose. Using this model shows a 95% index of agreement (IA) with the observed values; which suggests a good model performance and can also be used in estimating global solar radiation in the Savanna region particularly in areas with little or no such climatic data.


Sign in / Sign up

Export Citation Format

Share Document