scholarly journals Characteristics of solar radiation at Xiaotang, in the northern marginal zone of the Taklimakan Desert

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12373
Author(s):  
Lili Jin ◽  
Sasa Zhou ◽  
Qing He ◽  
Alim Abbas

The characteristics of solar radiation and the influence of sand and dust on solar radiation in the northern margin of Taklimakan Desert were analyzed using radiation observation data from 2018. The results showed that the annual total radiation, direct radiation, and scattered radiation at Xiaotang were 5,781.8, 2,337.9, and 3,323.8 MJ m−2, respectively. The maximum monthly total radiation, direct radiation, and scattered radiation were observed in July (679.8 MJ m−2), August (317.3 MJ m−2), and May (455.7 MJ m−2), respectively. The aerosol optical depth corresponded well with the scattered radiation, and the maximum value was in May. Further analysis showed a significant correlation between the total radiation and solar height angle under different weather conditions. Under the same solar height angle, total radiation was higher during clear days but lower on sandstorm days. Calculation of atmospheric transmittance showed that the average atmospheric transmittance on a clear day was 0.67; on sand-and-dust days, it was 0.46. When the atmospheric transmittance was 0.5, the increase in scattering radiation by aerosol in the air began to decrease. Probability analysis of radiation indicated the following probabilities of total radiation <500 W m−2 occurring on clear, floating-dust, blowing-sand, and sandstorm days: 67.1%, 76.3%, 76.1%, and 91.8%, respectively. Dust had the greatest influence on direct radiation; the probabilities of direct radiation <200 W m−2occurring on clear, floating-dust, blowing-sand, and sandstorm days were 44.5%, 93.5%, 91.3%, and 100%, respectively, whereas those of scattered radiation <600 W m−2were 100%, 99.1%, 98.1%, and 100%, respectively. Therefore, the presence of dust in the air will reduce scattered radiation.

2022 ◽  
Author(s):  
Mingjie Ma ◽  
Xinghua Yang ◽  
Qing He ◽  
Ali Mamtimin

Abstract Based on meteorological and dust devil intensification observation data in the desert transition zone of the Xiaotang region in the northern margin of the Taklimakan Desert, and combined with GPS sounding in the hinterland of the Taklimakan Desert, this study investigated the improvement and evaluation of the dust devil parameterization scheme. The results indicate that the thermodynamic efficiency of dust devils after improvement was significantly higher than that before improvement, improving the values by 84.7%, 63.9%, 25.6%, 13.3%, 12.5%, 22.7%, 26.6%, 26.9%, and 21.4% for the hourly intervals from 09:00–17:00, respectively. The annual occurrence of dust devils after improvement was 431 times, 55.2% more than before improvement. The correlation coefficients of convective boundary layer height after improvement was 0.96, higher than that before improvement (0.908). After the improvement, the total annual dust emission time was 181.3 h, 95.9% less than that calculated using the day length before improvement, and 31.8% more than that calculated using sunshine time before improvement. After the improvement, the average vertical dust flux of a single dust devil was 0.25 m2/s, 68.8% less than that before improvement. After the improvement, the average annual dust emission from dust devils per square kilometer was 15.3 t/km2, significantly lower than the value of 320.5 t/km2 before the improvement, approximately one-twentieth of the value.


2020 ◽  
Author(s):  
Lili Jin ◽  
Qing He ◽  
Zhenjie Li ◽  
Ali Mamtimin ◽  
Qilong Miao

&lt;p&gt;In order to reveal the essential feature of radiation in extreme arid region of Northwest China,using the global radiation&amp;#65292;direct radiation,diffuse radiation and meteorological data in the Tazhong station( in Takli-makan desert hinterland,83&amp;#176;39'E,38&amp;#176;58'N),the characteristics of atmospheric transparency coefficient,influence of sand-dust on solar radiation were analyzed by the statistical methods.The results show that: The coefficient of atmosphere transparency is better from October to December than other months,but it's worse in spring and summer.The index of the atmosphere transparency P&lt;sub&gt;2&lt;/sub&gt;&amp;#160;is the most ( least) in clear day ( sand storm day ) .The global radiation is more than 1000 W&amp;#183;m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&amp;#160;in clear day,dust day and sand blowing day,while,it is up to 700 W&amp;#183;m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&amp;#160;in sand storm day at most.The diffuse radiation is partly less than 400 W&amp;#183;m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;,mainly between 100 and 200 W&amp;#183;m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;in clear day.It is less than 600 W&amp;#183;m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&amp;#160;in dusty day mostly.&amp;#160;The direct radiation is reduced by dust aerosol.The probability are 41.2%,72.5%,78.1% and 100% when direct radiation is less than 200 W&amp;#183;m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&amp;#160;during clear day,dust day,sand blowing day and sand storm day.The diffuse radiation is gradually concentration high value with the sand of the atmosphere is increased.The variation of every radiation is big in dusty day.The daily curve (value) of diffuse radiation is similar to the global radiation,which is reduced by dust aerosol is the same as the direct radiation.That suggests the atmosphere transparency is closely related to the global radiation,diffuse radiation and direct radiation.&lt;/p&gt;


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1551
Author(s):  
Zihuai Guo ◽  
Yibin Yao ◽  
Jian Kong ◽  
Gang Chen ◽  
Chen Zhou ◽  
...  

Global navigation satellite system (GNSS) can provide dual-frequency observation data, which can be used to effectively calculate total electron content (TEC). Numerical studies have utilized GNSS-derived TEC to evaluate the accuracy of ionospheric empirical models, such as the International Reference Ionosphere model (IRI) and the NeQuick model. However, most studies have evaluated vertical TEC rather than slant TEC (STEC), which resulted in the introduction of projection error. Furthermore, since there are few GNSS observation stations available in the Antarctic region and most are concentrated in the Antarctic continent edge, it is difficult to evaluate modeling accuracy within the entire Antarctic range. Considering these problems, in this study, GNSS STEC was calculated using dual-frequency observation data from stations that almost covered the Antarctic continent. By comparison with GNSS STEC, the accuracy of IRI-2016 and NeQuick2 at different latitudes and different solar radiation was evaluated during 2016–2017. The numerical results showed the following. (1) Both IRI-2016 and NeQuick2 underestimated the STEC. Since IRI-2016 utilizes new models to represent the F2-peak height (hmF2) directly, the IRI-2016 STEC is closer to GNSS STEC than NeQuick2. This conclusion was also confirmed by the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) occultation data. (2) The differences in STEC of the two models are both normally distributed, and the NeQuick2 STEC is systematically biased as solar radiation increases. (3) The root mean square error (RMSE) of the IRI-2016 STEC is smaller than that of the NeQuick2 model, and the RMSE of the two modeling STEC increases with solar radiation intensity. Since IRI-2016 relies on new hmF2 models, it is more stable than NeQuick2.


2018 ◽  
Vol 81 ◽  
pp. 93-106 ◽  
Author(s):  
Antonio J. Gutiérrez-Trashorras ◽  
Eunice Villicaña-Ortiz ◽  
Eduardo Álvarez-Álvarez ◽  
Juan M. González-Caballín ◽  
Jorge Xiberta-Bernat ◽  
...  

1938 ◽  
Vol 34 (2) ◽  
pp. 208-208
Author(s):  
N. I. Kalitin

Biomedgiz. Leningrad branch. 1937 208 pp. Pr. 6 rubles. 50 kopecks. The content of the book is much wider than what the reader has a right to expect, judging by its title. The book concerns not only the measurement of radiant energy and touches on not only issues of interest to doctors working in resorts. The properties of solar radiation under various conditions, the influence of water vapor, ozone, dustiness of the atmosphere, the value of scattered radiation reflected from the sky and clouds, which is usually not paid enough attention, all these and many other issues are covered in detail in the book of prof. N.I. Kalitina largely on the basis of her own long-term research.


Formulation of the problem. Understanding that solar energy is the main source of the majority of biological, chemical and physical processes on Earth, investigation of its influence on different climatic fields allows us to define the features of its space and hour fluctuations. To define radiation and temperature regime of the territory it is necessary to determine climatic features of the spreading surface, which absorbs and will transform solar energy. Considering the fact that modern climatic changes and their consequences cover all components of the system, today there is a problem of their further study for comprehension of atmospheric processes, modeling weather conditions on different territories depending on the properties. The purpose of the article is to determine interrelations between indexes of solar radiation (the Wolf's number) and air temperature, atmospheric pressure on the territory of Ukraine during 1965-2015, their change in space and time. Methods. Correlative method is one of the main methods of a statistical analysis which allows us to receive correlation coefficients of solar radiation variability indexes, air temperature, atmospheric pressure on the territory of the research. This technique estimates the extent of solar radiation influence on temperature regime of the territory and distribution of atmospheric pressure. Results. Coefficients of correlation, which characterize variability of solar radiation indexes, air temperature and atmospheric pressure on the explored territory have been received by means of statistical correlation analysis method. This technique allows us to estimate the degree and nature of solar radiation influence on a temperature regime of the territory and distribution of atmospheric pressure. It has been defined that direct correlative connection between indexes of solar radiation is characteristic of air temperature and atmospheric pressure fields. Significant statistical dependence between incoming solar radiation on the territory of Ukraine and atmospheric pressure has been noted during the spring and autumn periods mainly at the majority of stations. Between indexes of solar radiation and air temperature the inverse correlative connection in winter will be transformed to a direct connection during the spring and summer periods. Scientific novelty and practical significance. Physical processes, which happen in the atmosphere, are characterized by complex interrelations. For further research it is important to define solar radiation value and the extent of influence on climatic conditions.


2021 ◽  
Author(s):  
Ines Sansa ◽  
Najiba Mrabet Bellaaj

Solar radiation is characterized by its fluctuation because it depends to different factors such as the day hour, the speed wind, the cloud cover and some other weather conditions. Certainly, this fluctuation can affect the PV power production and then its integration on the electrical micro grid. An accurate forecasting of solar radiation is so important to avoid these problems. In this chapter, the solar radiation is treated as time series and it is predicted using the Auto Regressive and Moving Average (ARMA) model. Based on the solar radiation forecasting results, the photovoltaic (PV) power is then forecasted. The choice of ARMA model has been carried out in order to exploit its own strength. This model is characterized by its flexibility and its ability to extract the useful statistical properties, for time series predictions, it is among the most used models. In this work, ARMA model is used to forecast the solar radiation one year in advance considering the weekly radiation averages. Simulation results have proven the effectiveness of ARMA model to forecast the small solar radiation fluctuations.


Author(s):  
Abdulhamid Yusuf ◽  
Hakeem Bolarinwa ◽  
Lukman Animasahun ◽  
Yinusa Babatunde

An analysis of measured global solar radiation (GR) in Osogbo (7.77oN, 4.57oE, 288m) is presented in the form of hourly average, monthly average and percentage frequency distribution. The experimental data corresponds to a year data of 2017. The results reveal that the monthly average values of daily total radiation exhibit seasonal variation with maximum value in dry season month of March (16.59MJ/m2) and minimum value in wet season month of August (8.98 MJ/m2). The annual average GR value is 14.20 MJ/m2 while the annual cumulative GR is 5122 MJ/m2. The solar radiation climate of Osogbo has also been compared to those reported for a number of locations. The percentage frequency of days possessing irradiation rate greater than 15 MJ/m2 is 14 percent whereas that possessing less than 10 MJ/m2 is 61 percent. We conclude, based upon the above analysis that Osogbo is characterized by relatively low global solar radiation.


2021 ◽  
Author(s):  
Jie Yang ◽  
Tianliang Zhao

&lt;p&gt;In this study, we used the sandstorm data of 233 meteorological stations in northern China, conventional meteorological observation data and MODIS-NDVI data in the 40 years from 1980 to 2019 to analyze the spatio-temporal variation of sandstorms in northern China and its related meteorological effects in this century.&lt;/p&gt;&lt;p&gt;The results show that: 1) The average number of sandstorm days in northern China has been fluctuating and decreasing since the beginning of this century, and increasing from 2017 to 2019. Spring is the main season of dust storm, and the springtime proportion of sandstorm days decreases year by year. 2) In the 1980s and 1990s, sandstorms covered almost covered the whole northwest region; Since the beginning of this century, the range of sandstorm days in the whole Northwest China has shown an obvious decadal downward trend. The spatial pattern of sandstorm days in northern China has been shrinking and moving westward since 2000, and the dominant position of the Gobi Desert in the Asian dust source region has been decreasing year by year. The high sandstorm days were located in the Taklimakan Desert with the increasing trend of sandstorm days year by year. 3) The temporal and spatial variation of sandstorm days in northern China is closely related to the increase of vegetation cover with the greenness and wetness of the land surface, the decreases of average wind speed and gale days, and the significant increase of annual precipitation in northern China after 2000.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document