scholarly journals State of the art in wind speed in England using BATS ,TBATS , Holt’s Linear and ARIMA model

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 129-138
Author(s):  
Mostafa Abotaleb ◽  
Tatiana Makarovskikh ◽  
Aynur Yonar ◽  
Amr Badr ◽  
Pradeep Mishra ◽  
...  

Wind energy is one of the most important renewable energy sources in the world. Hence, the prediction of wind speed is a highly significant subject with respect to both protecting the environment and economic development. England is among the countries with an increasing interest in the potential for wind energy systems. In this study, various time series models, including BATS, TBATS, Holt’s Linear Trend, and ARIMA models were applied for wind speed prediction in England, and their performance was compared. The available wind speed data between 1994-07-07 and 2015-12-31 were divided into two parts: training data that is used to build up the models and testing data that is used to measure the validity of a model forecast. The results of the testing data indicate that the BATS and ARIMA outperform the other time series models according to the root mean square errors.

Author(s):  
Senol Celik ◽  
Handan Ankarali ◽  
Ozge Pasin

ABSTRACT Objectives: The objective of this study is to compare the various nonlinear and time series models in describing the course of the coronavirus disease 2019 (COVID-19) outbreak in China. To this aim, we focus on 2 indicators: the number of total cases diagnosed with the disease, and the death toll. Methods: The data used for this study are based on the reports of China between January 22 and June 18, 2020. We used nonlinear growth curves and some time series models for prediction of the number of total cases and total deaths. The determination coefficient (R2), mean square error (MSE), and Bayesian Information Criterion (BIC) were used to select the best model. Results: Our results show that while the Sloboda and ARIMA (0,2,1) models are the most convenient models that elucidate the cumulative number of cases; the Lundqvist-Korf model and Holt linear trend exponential smoothing model are the most suitable models for analyzing the cumulative number of deaths. Our time series models forecast that on 19 July, the number of total cases and total deaths will be 85,589 and 4639, respectively. Conclusion: The results of this study will be of great importance when it comes to modeling outbreak indicators for other countries. This information will enable governments to implement suitable measures for subsequent similar situations.


Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Ernesta Grigonytė ◽  
Eglė Butkevičiūtė

The massive integration of wind power into the power system increasingly calls for better short-term wind speed forecasting which helps transmission system operators to balance the power systems with less reserve capacities. The  time series analysis methods are often used to analyze the  wind speed variability. The  time series are defined as a sequence of observations ordered in time. Statistical methods described in this paper are based on the prediction of future wind speed data depending on the historical observations. This allows us to find a sufficiently good model for the wind speed prediction. The paper addresses a short-term wind speed forecasting ARIMA (Autoregressive Integrated Moving Average) model. This method was applied for a number of different prediction problems, including the short term wind speed forecasts. It is seen as an early time series methodology with well-known limitations in wind speed forecasting, mainly because of insufficient accuracies of the hourly forecasts for the second half of the day-ahead forecasting period. The authors attempt to find the maximum effectiveness of the model aiming to find: (1) how the identification of the optimal model structure improves the forecasting results and (2) what accuracy increase can be gained by reidentification of the structure for a new wind weather season. Both historical and synthetic wind speed data representing the sample locality in the Baltic region were used to run the model. The model structure is defined by rows p, d, q and length of retrospective data period. The structure parameters p (Autoregressive component, AR) and q (Moving Average component, MA) were determined by the Partial Auto-Correlation Function (PACF) and Auto-Correlation Function (ACF), respectively. The model’s forecasting accuracy is based on the root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE). The results allowed to establish the optimal model structure and the length of the input/retrospective period. The  quantitative study revealed that identification of the  optimal model structure gives significant accuracy improvement against casual structures for 6–8 h forecast lead time, but a season-specific structure is not appropriate for the entire year period. Based on the conducted calculations, we propose to couple the ARIMA model with any more effective method into a hybrid model.


Author(s):  
Isra Al-Turaiki ◽  
Fahad Almutlaq ◽  
Hend Alrasheed ◽  
Norah Alballa

COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is important in order to determine how to combat and track its spread. COVID-19 data is an example of time-series data where several methods can be applied for forecasting. Although various time-series forecasting models are available, it is difficult to draw broad theoretical conclusions regarding their relative merits. This paper presents an empirical evaluation of several time-series models for forecasting COVID-19 cases, recoveries, and deaths in Saudi Arabia. In particular, seven forecasting models were trained using autoregressive integrated moving average, TBATS, exponential smoothing, cubic spline, simple exponential smoothing Holt, and HoltWinters. The models were built using publicly available daily data of COVID-19 during the period of 24 March 2020 to 5 April 2021 reported in Saudi Arabia. The experimental results indicate that the ARIMA model had a smaller prediction error in forecasting confirmed cases, which is consistent with results reported in the literature, while cubic spline showed better predictions for recoveries and deaths. As more data become available, a fluctuation in the forecasting-accuracy metrics was observed, possibly due to abrupt changes in the data.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Nor Hafizah Hussin ◽  
Fadhilah Yusof ◽  
‘Aaishah Radziah Jamaludin ◽  
Siti Mariam Norrulashikin

In the global energy context, renewable energy sources such as wind is considered as a credible candidate for meeting new energy demands and partly substituting fossil fuels. Modelling and forecasting wind speed are noteworthy to predict the potential location for wind power generation. An accurate forecasting of wind speed will improve the value of renewable energy by enhancing the reliability of this natural resource. In this paper, the wind speed data from year 1990 to 2014 in 18 meteorological stations throughout Peninsular Malaysia were modelled using the Autoregressive Integrated Moving Average (ARIMA) to forecast future wind speed series. The Ljung-Box test was used to determine the presence of serial autocorrelation, while the Engle’s Lagrange Multiplier (LM) test was used to investigate the presence of Autoregressive Conditional Heteroscedasticity (ARCH) effect in the residual of the ARIMA model. In this study, three stations showed good fit using the ARIMA modelling since no serial correlation and ARCH effect were present in the residuals of the ARIMA model, while the ARIMA-GARCH had proven to precisely capture the nonlinear characteristic of the wind speed daily series for the remaining stations. The forecasting accuracy measure used was based on the value of root mean square error (RMSE) and mean absolute percentage error (MAPE). Both ARIMA and ARIMA-GARCH model proposed provided good forecast accuracy measure of wind speed series in Peninsular Malaysia. These results will help in providing a quantitative measure of wind energy available in the potential location for renewable energy conversion.


2021 ◽  
Vol 49 (1) ◽  
pp. 244-251
Author(s):  
Narayanan Natarajan ◽  
S. Rehman ◽  
Nandhini Shiva ◽  
M. Vasudevan

An accurate estimate of wind resource assessment is essential for the identification of potential site for wind farm development. The hourly average wind speed measured at 50 m above ground level over a period of 39 years (1980-2018) from 25 locations in Tamil Nadu, India have been used in this study. The annual and seasonal wind speed trends are analyzed using linear and Mann-Kendall statistical methods. The annual energy yield, and net capacity factor are obtained for the chosen wind turbine with 2 Mega Watt rated power. As per the linear trend analysis, Chennai and Kanchipuram possess a significantly decreasing trend, while Nagercoil, Thoothukudi, and Tirunelveli show an increasing trend. Mann-Kendall trend analysis shows that cities located in the southern peninsula and in the vicinity of the coastal regions have significant potential for wind energy development. Moreover, a majority of the cities show an increasing trend in the autumn season due to the influence of the retreating monsoons which is accompanied with heavy winds. The mean wind follows an oscillating pattern throughout the year at all the locations. Based on the net annual energy output, Nagercoil, Thoothukudi and Nagapattinam are found to be the most suitable locations for wind power deployment in Tamil Nadu, followed by Cuddalore, Kumbakonam, Thanjavur and Tirunelveli.


Author(s):  
T. A. Kussaiynov ◽  
A. A. Bulasheva ◽  
Zh. O. Zhakupova

Time series models are one of the most commonly used forecasting tools in the agricultural economy. In this case, the future values of the variable are function of the past values of the same variable. In other words, there are autoregressive processes. The dynamic of grain yields in the North-Kazakhstan and Kostanay regions of Kazakhstan demonstrate very similar statistical properties. In both cases, there is a positive linear trend, the cyclical development of the process is clearly discernible. Serious attention should also be given to the existence of a cycle in the dynamics of the dispersion level of crop yields. These stochastic features of the indicator should be taken into account in agricultural forecasting.


2021 ◽  
Vol 6 (3) ◽  
pp. 22-33
Author(s):  
Atiqa Nur Azza Mahmad Azan ◽  
Nur Faizatul Auni Mohd Zulkifly Mototo ◽  
Pauline Jin Wee Mah

Gold is known as the most valuable commodity in the world because it is a universal currency recognized by every single bank across the globe. Thus, many people were interested in investing gold since gold market was always steadier compared to other investment (Khamis and Awang, 2020). However, the credibility of gold was questionable due to the changes in gold prices caused by a variety of circumstances (Henriksen, 2018). Hence, information on the inflation of gold prices were needed to understand the trend in order to plan for the future in accordance with international gold price standards. The aim of this study was to identify the trend of Kijang Emas monthly average prices in Malaysia from the year 2010 to 2021, to determine the best fit time series model for Kijang Emas prices in Malaysia and using univariate time series models to forecast Kijang Emas prices in Malaysia. The ARIMA and ARFIMA models were used in this study to model and forecast the prices of gold (Kijang Emas) in Malaysia. Each of the actual monthly Kijang Emas prices for 2021 were found to be within the 95% predicted intervals for both the ARIMA and ARFIMA models. The performances for each model were checked by considering the values of MAE, RMSE and MAPE. From the findings, all the MAE, RMSE and MAPE values showed that the ARFIMA model emerged as the better model in forecasting the Kijang Emas prices in Malaysia compared to the ARIMA model.


Sign in / Sign up

Export Citation Format

Share Document