scholarly journals Silicon does not alleviate the adverse effects of drought stress in soybean plants

2016 ◽  
Vol 37 (6) ◽  
pp. 3941 ◽  
Author(s):  
Viviane Ruppenthal ◽  
Tiago Zoz ◽  
Fábio Steiner ◽  
Maria Do Carmo Lana ◽  
Deise Dalazen Castagnara

Beneficial effects of silicon (Si) in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress) and four Si rates (0, 50, 100 and 200 mg kg–1). Soybean plants were grown until beginning flowering (R1) growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC) in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.

2013 ◽  
Vol 38 (10) ◽  
pp. 1884-1890 ◽  
Author(s):  
Ren-He ZHANG ◽  
Dong-Wei GUO ◽  
Xing-Hua ZHANG ◽  
Hai-Dong LU ◽  
Jian-Chao LIU ◽  
...  

Irriga ◽  
2018 ◽  
Vol 21 (3) ◽  
pp. 605
Author(s):  
Otavio Bagiotto Rossato ◽  
Carlos Alexandre Costa Crusciol ◽  
Jorge Martinelli Martello

FITOMASSA E ACUMULO DE MACRONUTRIENTES EM CANA-DE-AÇÚCAR SOB COMPACTAÇÃO E UMIDADE DO SOLO  OTAVIO BAGIOTTO ROSSATO1; JORGE MARTINELLI MARTELLO2; CARLOS ALEXANDRE COSTA CRUSCIOL3  1Professor do Instituto Federal Catarinense, CEP 89700-000, Concórdia, SC, Brasil.E-mail: [email protected] em Agronomia – Energia na Agricultura, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), CEP 18610-307, 237, Botucatu, SP, Brasil.E-mail: [email protected] do Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), CEP 18610-307, 237, Botucatu, SP, Brasil. E-mail: [email protected]  1 RESUMO O experimento foi realizado em tubos de PVC, em casa de vegetação, usando um delineamento de blocos ao acaso, com quatro repetições, com tratamentos arranjados em esquema fatorial (4x3x2), equivalente a quatro variedades, 3 níveis de compactação do solo na camada de 0,20 a 0,30 m (1,35; 1,45 e 1,55 Mg m-3) e 2 teores de água no solo (70% e 90% da capacidade de campo). Aos 72 dias após emergência da plantas foram avaliadas a massa seca de raízes e parte aérea e os teores de N, P, K, Ca, Mg, S acumulados na parte aérea da cana-de-açúcar. O maior nível de umidade no solo propiciou aumento na produção de matéria seca de raiz e da parte aérea além de maior acúmulo de N, P, K, Ca, Mg e S na parte aérea da cana-de-açúcar, independentemente da variedade e nível de compactação. Além disso, na variedade RB72454 obteve-se maior produção de matéria seca da parte aérea e maior acúmulo de N, P, K, Ca, Mg e S que as demais variedades quando sob maior disponibilidade de água no solo. O maior nível de compactação do solo promoveu redução na produção de matéria seca da parte aérea e no acúmulo de N, P, K, Ca e Mg na parte aérea da cana-de-açúcar, independentemente da variedade utilizada. Em solos com menor disponibilidade de água (70%CC), o maior nível de compactação do solo (1,55 Mg m-3) promoveu redução na produção de biomassa da parte aérea e no acúmulo de N, P, K, Ca e Mg.  Palavras-Chaves: Saccharum spp, teor de água no solo, densidade, matéria seca, raiz, nutrientes, parte aérea.  ROSSATO, O. B.; MARTELLO, J. M.; CRUSCIOL, C. A. C.DRY MATTER PRODUCTION AND MACRONUTRIENT ACCUMULATION IN SUGARCANE GROWN UNDER LEVELS OF COMPACTION AND SOIL MOISTURE      2 ABSTRACT The experiment was conducted in PVC tubes, in a greenhouse, using a randomized block design with four replications, in a factorial arrangement (4x3x2) equivalent to four varieties, three levels of soil compaction in the layer 0.20 to 0.30 m (1.35, 1.45 and 1.55 Mg m-3) and two soil moisture contents (70% and 90% of field capacity). 72 days after the plants emergence the dry mass of roots and shoots and N, P, K, Ca, Mg, S contents accumulated in shoots of sugarcane were assessed. The results show that the higher moisture level in the soil led to increases in dry matter production of shoots and roots besides higher accumulation of N, P, K, Ca, Mg and S in sugarcane shoots regardless of the variety and level of compaction. In addition, variety RB72454 provided greater shoots with dry matter and higher accumulation of N, P, K, Ca, Mg and S on shoots than in other varieties under greater availability of water in the soil. The highest level of soil compaction promoted reduction in shoot dry matter production and accumulation of N, P, K, Ca and Mg on shoots of sugarcane regardless of the variety used. On soils with lower water availability (70% of field capacity), the highest level of soil compaction (1.55 Mg m-3) promoted a reduction on shoot biomass production and accumulation of N, P, K, Ca and Mg. Keywords: Saccharum spp, soil water content, density, dry matter, root, nutrients, shoot.


2010 ◽  
Vol 39 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Marcio Mahmoud Megda ◽  
Francisco Antonio Monteiro

The objective of this work was to study morphogenic characteristics, and dry matter production of roots and shoots of marandu palisadegrass (Brachiaria brizantha cv. Marandu) submitted to combinations of nitrogen and potassium, in a nutritive solution, employing silica as substrate. The experiment was carried out in a greenhouse during the summer. It was used a 5² fractionated factorial scheme with 13 combinations of nitrogen and potassium, which were distributed in a randomized block design, with four replications. The nitrogen × potassium interaction was significant for the number of tillers and leaves, for leaf area, for shoots and root section dry mass, for total length and surface and specific length and surface in the roots. Production of aerial part dry mass positively correlated with the number of tillers and leaves and grass leaf area. Nitrogen rates modulated the root system development, and the root specific length and surface decreased when high rates of nitrogen and potassium were supllied. Nitrogen and potassium influence Marandu palisadegrass morphogenic characteristics, which are determinant for grass dry matter production.


2018 ◽  
Vol 85 (0) ◽  
Author(s):  
Suzete Fernandes Lima ◽  
Leandro Spíndola Pereira ◽  
Gustavo Dorneles Sousa ◽  
Simonny Araújo Vasconcelo ◽  
Adriano Jakelaitis ◽  
...  

ABSTRACT: The use of herbicide underdoses allows minimizing the competition of grasses on annual crops, enabling simultaneous cultivation. In this context, the objective of this study was to investigate glyphosate underdoses on the suppression of the initial growth of three Panicum maximum cultivars aiming at the integrated cultivation, in addition to the effects of forage species on the incidence and development of weeds. Three field experiments were conducted. The experimental design was a randomized block design with four replications and eight treatments consisting of increasing glyphosate doses (0, 54, 108, 270, 378, 540, 756, and 1,080 g a.e. ha−1). An atrazine dose of 1,200 g a.i. ha−1 was added to each treatment. Plant phytotoxicity assessments were performed at 7, 14, 21, and 28 days after application. At 80 and 125 days after sowing, the assessments of total dry matter production, leaf dry matter, stem dry matter, and leaf to stem ratio were carried out, in addition to density and dry matter production of weed community. Glyphosate underdoses below 215, 65, and 90 g a.e. ha-1 have a potential to be investigated aiming at the management of P. maximum cv. Atlas, P. maximum cv. Mombasa, and P. maximum cv. Tanzania under intercropping. The three forage species are effective in suppressing weeds.


2018 ◽  
Vol 39 (1) ◽  
pp. 275
Author(s):  
Ana Paula da Silva Carvalho ◽  
Roney Mendes de Arruda ◽  
Joadil Gonçalves de Abreu ◽  
Alexandre Lima de Souza ◽  
Rosane Cláudia Rodrigues ◽  
...  

This study aimed to evaluate how different irrigation water depths influence the agronomical features of elephant grass (Pennisetum purpureum Schum) cv. Roxo. Grass was cultivated in a pasture belonging to the Bovine Sector of the National Agrotechnical School of Caceres – MT. The experiment was a block design with five treatments and four repetitions. Treatments consisted of five water depths: 0 = 0% of available water (AW), 1 = 21% of AW, 2 = 34% of AW, 3 = 74% of AW, and 5 = 100% of AW. Evaluated features were production (dry matter ha-1), plant height, leaf/steam ratio, and stem diameter. Dry matter production of cuts from May and July increased linearly with increasing water depth (P < 0.05). Plant height increased linearly as water depth increased in the cuts of May and September, while the height of July cuts was 71.76 cm under an irrigation depth of 390.77 mm. In May, July, and September cuts, leaf percentage decreased linearly as water depth increased (P < 0.05). An increase of 1 mm in water depth reduced leaf percentage by 0.0936% (May), 0.0295% (July), and 0.0122% (September). Our results indicate that to improve dry matter production, May, July, and September cuts should be irrigated with water depths of 56.03 mm, 601.78 mm, and 577.65 mm, respectively.


2010 ◽  
Vol 34 (2) ◽  
pp. 435-442 ◽  
Author(s):  
Alberto C. de Campos Bernardi ◽  
Marisa Bezerra de Mello Monte ◽  
Paulo Renato Perdigão Paiva ◽  
Carlos Guarino Werneck ◽  
Patrick Gesualdi Haim ◽  
...  

Zeolites are hydrated crystalline aluminosilicate minerals of natural occurrence, structured in rigid third dimension net that can be used as slow release plant-nutrient source. The main objective of this study was to evaluate the effects of plant growth substrate under zeolite application, enriched with N, P and K, on dry matter yield and on nutrient contents in consecutive crops of lettuce, tomato, rice, and andropogon grass. The experiment was carried out in a greenhouse, with 3 kg pots with an inert substrate, evaluated in a randomized block design with three replications. Treatments consisted of four types of enrichment of concentrated natural zeolite: concentrated zeolite (Z) only, zeolite + KNO3 (ZNK), zeolite + K2HPO4 (ZPK) and zeolite + H3PO4 + apatite (ZP), and a control grown in substrate fertilized with a zeolite-free nutrient solution. Four levels of enriched zeolite were tested: 20, 40, 80, and 160 g/pot. Four successive crops were grown on the same substrate in each pot: lettuce, tomato, rice, and andropogon grass. Results indicated that N, P and K enriched zeolite was an adequate slow-release nutrient source for plants. The total dry matter production of above-ground biomass of four successive crops followed a descending order: ZP > ZPK > ZNK > Z.


2017 ◽  
Vol 4 (3) ◽  
pp. 157-164
Author(s):  
Mohammad Issak ◽  
Most Moslama Khatun ◽  
Amena Sultana

The experiment was conducted to study the effect of salicylic acid (SA) as foliar spray on yield and yield contributing characters of BRRI Hybrid dhan3.The experiment was laid out in a randomized complete block design (RCBD) with three replications and six treatment combinations as, T1: 0 μM SA, T2: 200 μM SA, T3: 400 μM SA, T4: 600 μM SA, T5: 800 μM SA and T6: 1000 μM SA. The results revealed that biomass production, dry matter production and yield and yield contributing characters were significantly increased due to the foliar application of SA. At the maximum tillering (MT) stage, the highest biomass production (15.0 t/ha) and dry matter production was observed in T3 treatment. Treatments T4, T5 and T6 showed significant variation on the effective tillers/hill. The maximum effective tillers/hill were found in the treatment T6. The percentages of spikelet sterility were decreased with increasing the level of SA and the percentage of filled grains/panicle were increased with increasing level of SA. The insect infestation was reduced with increasing level of SA to up to 1000 μM. The maximum grain yield (9.21 t/ha) and straw yield (9.22 t/ha) was found in the treatment T6 which was identical to T5. On the other hand, in all cases the lowest results were found in the control treatment. The result showed that grain yield of rice increased with increasing level of SA to up to 1000 μM (T6 treatment). Our results suggest that foliar spray of SA might be applied to increase the yield of hybrid rice in Bangladesh.Res. Agric., Livest. Fish.4(3): 157-164, December 2017


2020 ◽  
Vol 8 (2) ◽  
pp. 265
Author(s):  
Pedro Luan Ferreira da Silva ◽  
Flávio Pereira de Oliveira ◽  
Walter Esfrain Pereira ◽  
Adriana Ferreira Martins ◽  
Camila Costa da Nóbrega ◽  
...  

The aim of this study was to assess the correlation between physical attributes of a Yellow Oxisol and the shoot dry matter production in grasses from the Brachiaria genus in the Brejo region, in Paraíba. The experiment has been conducted since 2005 in an experimental area of the Center of Agricultural Sciences of the Federal University of Paraíba, Areia-PB (6°58’12’’ S; 35°41’15’’ W and 573 m altitude). The experimental design adopted was that of randomized complete blocks (RCB) with 4 treatments and 4 replications. T1- Brachiaria decumbens Stapf.; T2- Brachiaria brizantha (Hochst) Stapf.; T3- Brachiaria humidicola (Rendle) Schwnickerdt Vr.; T4- Brachiaria brizantha MG5 cv. Vitória. The soil in the experimental area was characterized as Dystrophic Yellow Oxisol with clay-sandy texture. Soil samples with disturbed and undisturbed structure were collected within the 0.0-0.10 m layer. The shoot dry matter of grasses was collected in october of 2018. The analyzed variables were: bulk density (BD), compaction degree (CD), total porosity (TP), macroporosity (Ma), microporosity (Mi), field capacity (θFC), permanent wilting point (θPWP), available water content (θAWC), soil aeration capacity (SAC), mean weighted diameter of wet and dry aggregates (Wet and Dry MWD), aggregate stability index (ASI) and saturated hydraulic conductivity (Kθ). The Student’s t-test and Pearson's correlation analysis (p <0.05) were performed. It was concluded that dry matter production was positively influenced by θFC and θPWP. And the increase of the average values of BD, CD, Wet and Dry MWD favored the increase of shoot dry matter production by grasses.


2009 ◽  
Vol 60 (3) ◽  
pp. 251 ◽  
Author(s):  
C. P. Gunasekera ◽  
R. J. French ◽  
L. D. Martin ◽  
K. H. M. Siddique

The responses to water stress during the post-flowering period of two mustard breeding lines (887.1.6.1 and Muscon) and a commercial canola cv. Monty were tested in the field at Merredin in the low-rainfall Mediterranean-type environment of Western Australia. Three water-stress treatments were imposed using supplemental irrigation and a rain-exclusion shelter. Increasing water stress in the post-flowering period significantly reduced dry matter production and seed yields. Harvest index was slightly increased by mild stress, but reduced back to control levels by severe stress. Pods/plant, seeds/pod, and 1000-seed weight were all reduced by water stress. Dry matter production was higher in mustard than in canola, due to its greater water use and radiation interception. Water-use efficiency (WUE) for dry matter production and radiation-use efficiency (RUE) were higher in mustard than in canola. WUE for dry matter production and RUE were insensitive to the levels of water stress in mustard in this experiment, but declined significantly in canola. The greater water use in mustard and insensitivity of WUE for dry matter production and RUE to water stress were attributed to significantly higher levels of osmotic adjustment in mustard, although osmotic adjustment was also observed in canola. Despite this, canola seed yield was not significantly lower than the seed yield of the better mustard genotype, although stress caused a significantly greater percentage yield reduction in canola. This is because canola had a higher harvest index, which also meant it had higher WUE than mustard for grain production under mild stress. Mustard’s poorer harvest index was due to more of the dry matter being invested in stem and, in the case of cv. Muscon, to a short reproductive duration and a low proportion of pod weight allocated to seed. Canola had significantly higher seed oil concentration than mustard, which meant that it produced higher total oil yield despite sometimes producing lower seed yield. However, its oil concentration was reduced more by stress than mustard’s, so under the most severe stress conditions, both mustard genotypes produced higher total oil yield. Mustard has potential as an oil-producing crop in the low-rainfall Mediterranean-type environments of Western Australia, but improved genotypes, greater harvest index, and greater seed yield are required.


2014 ◽  
Vol 34 (4) ◽  
pp. 738-745 ◽  
Author(s):  
Veridiana Z. de Mendonça ◽  
Luiz M. M. de Mello ◽  
Francisco C. B. L. Pereira ◽  
José O. da R. Silva ◽  
Élcio H. Yano

Corn cropping for silage, due to the plant material exportation, intercropping with forage provides greater ground cover and straw formation for the Direct Planting System (DPS) continuity. The objective of this study was to evaluate corn production for silage in DPS intercropped with four forages (Urochloa brizantha cv. Marandu, U. ruziziensis cv. Ruziziensis, Panicum maximum cv. Tanzânia and P. maximum cv. Áries). We applied three sowing methods (in row together with corn fertilizer; by no-till sowing simultaneously to corn sowing and at V4 corn stage) and corn without intercropping. The experiment was conducted in autumn/ winter of 2010, in Selvíria - MS, in a randomized block design in factorial arrangement (4 x 3 + 1) and 4 replications. For corn, we evaluated plant height, basal stem diameter, initial and final stand and silage production and for forage dry matter production. Morphological characteristics and corn yield were not affected by intercropping when compared to sole corn crop. Forage dry matter production sown in corn row with fertilizer is a highlight, which in addition to providing greater productivity, harnesses the operation during sowing.


Sign in / Sign up

Export Citation Format

Share Document