scholarly journals Swine wastewater treatment using an anaerobic baffled (ARB) and a UASB reactor system

2017 ◽  
Vol 38 (6) ◽  
pp. 3705
Author(s):  
Luciano Dos Santos Rodrigues ◽  
Ana Cristina Araujo Pinto ◽  
Joyce Da Cruz Ferraz Dutra ◽  
Renata Rodrigues Sampaio ◽  
Stella Rubim de Sousa ◽  
...  

The purpose of this study was to assess the swine wastewater treatment system, consisting of the anaerobic baffled reactor (ABR), followed by the upflow anaerobic sludge blanket (UASB) reactor at full scale. The system was monitored by analyzing samples collected in the influent and effluent of ABR and UASB. The following parameters were analyzed: temperature, pH, total suspended solids (TSS), volatile suspended solids (VSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Averages of total removal of COD and BOD were 96.7 and 98.4%, respectively. The mean concentrations of COD, BOD, TSS, and VSS at the final effluent were 611, 124, 138, and 134 mg L-1, respectively. The mean volumetric organic loadings (VOL) at the ABR and UASB were 10.29 and 0.99 kg COD m-1d-1. Therefore, the ABR-UASB system was found to be a promising alternative for the swine wastewater treatment.

2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


2021 ◽  
Author(s):  
Perla Gonzalez ◽  
Ana Aguilar Ruiz ◽  
Andrea Reynosa Varela ◽  
Ulises Durán Hinojosa ◽  
Marco Garzón Zuñiga ◽  
...  

Abstract This study focused on evaluating different support media for COD and nitrogen compound removal from an Upflow Anaerobic Sludge Blanket (UASB) reactor fed with swine wastewater. Maximum specific nitrification (MSNA) and denitrification (MSDA) activity tests were performed in two fixed-film systems with (1) polyurethane foam (R1) and (2) polyethylene rings (R2). The results showed that the R2 system performed more efficiently than R1, reaching organic matter removal of 77 ± 8% and nitrogen of 98 ± 4%, attributed to higher specific denitrifying activity recorded (5.3 ± 0.34 g NO3--N/g VTS ∙h). In this sense, MSDA tests indicated that the suspended biomass was responsible for at least 70% of nitrogen removal in the form of ammonium compared with 20% attributed to biomass in the form of biofilm. On the other hand, 40 ± 5% of initial nitrogen could not be quantified in the system effluents, but 10 ± 1% was attributed to loss by volatilization. According to the analyses, the previous information infers the development of simultaneous nitrification-denitrification (SND) routes. Respect to the analyses of microbial diversity and abundance in the biofilm of R2 rings, the presence of the genus Pseudomonas dominated the prokaryotic community of the system in 54.4%.


2020 ◽  
Vol 81 (9) ◽  
pp. 1951-1960 ◽  
Author(s):  
C. S. Cabral ◽  
A. L. Sanson ◽  
R. J. C. F. Afonso ◽  
C. A. L. Chernicharo ◽  
J. C. Araújo

Abstract Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.


2012 ◽  
Vol 65 (10) ◽  
pp. 1887-1894 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m3 d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.


1986 ◽  
Vol 18 (12) ◽  
pp. 99-108 ◽  
Author(s):  
Gatze Lettinga ◽  
Look Hulshoff Pol

Of the high rate anaerobic wastewater treatment systems the UASB (Upflow Anaerobic Sludge Blanket) reactor has found the widest application. Therefore the attention with respect to design, operation and economy will be focussed on this reactor type. In designing a UASB reactor specific attention is needed for the GSS (Gas-Solids Separator) device and the feed inlet system. For soluble wastewater generally no phase separation is required. Only for wastewaters high in suspended solids pre-acidification in a separate acidification reactor can be beneficial. Increasing attention is given to the development of modified UASB systems, such as a combination of a sludge bed reactor and an anaerobic filter. Other possible modified UASB systems may be found in a FS (Floating Settling) UASB reactor, the EGSB (Expanded Granular Sludge Bed) reactor and the UASB IC (Internal Circulation) reactor. As many factors are involved in the costs of a UASB reactor, only some rough data on reactor costs are presented.


2004 ◽  
Vol 31 (3) ◽  
pp. 420-431 ◽  
Author(s):  
S K Patidar ◽  
Vinod Tare

The effect of micro-nutrients, such as Fe, Ni, Zn, Co, and Mo, on anaerobic degradation of sulfate laden organics was investigated using bench-scale models of upflow anaerobic sludge blanket (UASB) reactor, anaerobic baffled reactor (ABR), and hybrid anaerobic baffled reactor (HABR), operating in varying conditions in ten phases (organic loading of 1.9–5.75 kg COD/(m3·d), sulfate loading of 0.54–1.88 kg SO42–/(m3·d), chemical oxygen demand (COD):SO42–ratio of 2.0–8.6). In the initial phase, no nutrient limitation was observed with COD removal of more than 94% in all three systems. Subsequently, increase in sulfate loading resulted in Ni and Co limitation and their supplementation restored COD removal in UASB system. However, baffled systems did not recover because of severe inhibition by sulfide. Results indicate that precipitation of nutrients could seriously deteriorate process performance, leading to failure even before sulfide concentration attains toxic level. The limitation of Fe coupled with high sulfate loading (1.88 kg SO42–/(m3·d)) resulted in growth of low-density, fragile, hollow, and granular biomass in UASB that washed out and caused process instability. Supplementation of Fe with other nutrients stabilized UASB process and also improved COD removal.Key words: anaerobic degradation, nutrients, UASB, ABR, HABR, sulfide toxicity, sulfate laden organics.


2019 ◽  
Vol 14 (4) ◽  
pp. 908-920 ◽  
Author(s):  
Oliver Saavedra ◽  
Ramiro Escalera ◽  
Gustavo Heredia ◽  
Renato Montoya ◽  
Ivette Echeverría ◽  
...  

Abstract This study aims to determine the seasonal variability in the performance of a medium size population wastewater treatment plant (WWTP) in Bolivia. The semi-arid area where the WWTP is located is characterized as agricultural land, with an annual rainfall of 500 mm and a mean temperature of 17 °C. The WWTP is built up of five modules, each one comprising two treatment trains composed of an upflow anaerobic sludge blanket (UASB) reactor and horizontal gravel filter. The performance of the full process has been determined based on water quantity and quality. Seven monitoring campaigns of chemical and physical wastewater characteristics were performed from March to December 2017. The measured effluent showed average removal efficiencies of 83 ± 8% and 37 ± 60% for total chemical oxygen demand (COD) and total suspended solids (TSS), respectively. The treatment system has proven to be efficient to remove organic matter and TSS, despite the occurrence of high COD and total solids (TS) influent concentrations, the accumulation of solids at all the processes and the variability of flow and temperature inside the UASB reactors. In order to improve further this efficiency, it is recommended to implement a primary sedimentation unit as a pretreatment for the UASB system that would help to homogenize both the flow and the quality of the influent.


2013 ◽  
Vol 67 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Tarek Elmitwalli

Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (CODss) concentration is directly proportional to the influent CODss concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient CODss removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved CODss removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (CODt) concentration and HRT. The influent CODt concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of CODt removal, as compared with optimization of CODt conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.


2015 ◽  
Vol 72 (11) ◽  
pp. 2034-2044 ◽  
Author(s):  
Rosa Elena Yaya Beas ◽  
Katarzyna Kujawa-Roeleveld ◽  
Jules B. van Lier ◽  
Grietje Zeeman

This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m−3 d−1, 0.53 kgCOD m−3 d−1 and 0.24 kgCOD m−3 d−1 correspondingly at hydraulic loading rates of 1.92 m3 m−2 d−1, 2.97 m3 m−2 d−1 and 1.32 m3 m−2 d−1, respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops.


2013 ◽  
Vol 68 (7) ◽  
pp. 1495-1502 ◽  
Author(s):  
Jocilene Ferreira da Costa ◽  
André Cordeiro de Paoli ◽  
Martin Seidl ◽  
Marcos von Sperling

A system composed of two horizontal subsurface flow constructed wetlands operating in parallel was evaluated for the post-treatment of UASB (upflow anaerobic sludge blanket) reactor effluent, for a population equivalent of 50 inhabitants per unit. One unit was planted with cattail (Typha latifolia) and the other was unplanted. The study was undertaken over a period of 4 years, comprising monitoring of influent and effluent constituents together with a full characterization of the behaviour of the units (tracer studies, mathematical modelling of chemical oxygen demand (COD) decay, characterization of solids in the filter medium). The mean value of the surface hydraulic load was 0.11 m3m−2d−1, and the theoretical hydraulic retention time was 1.1 d in each unit. Using tracer tests with 82Br, dispersion number (d) values of 0.084 and 0.079 for the planted and unplanted units were obtained, indicating low to moderate dispersion. The final effluent had excellent quality in terms of organic matter and suspended solids, but the system showed low capacity for nitrogen removal. Four-year mean effluent concentration values from the planted and unplanted units were, respectively: biochemical oxygen demand (BOD5): 25 and 23 mg L−1; COD: 50 and 55 mg L−1; total suspended solids (TSS): 9 and 9 mg L−1; N-ammonia: 27 and 28 mg L−1. The COD decay coefficient K for the traditional plug-flow model was 0.81 and 0.84 d−1 for the planted and unplanted units. Around 80% of the total solids present in the filter medium were inorganic, and most of them were present in the interstices rather than attached to the support medium. As an overall conclusion, horizontal subsurface flow wetlands can be a very suitable post-treatment method for municipal effluents from anaerobic reactors.


Sign in / Sign up

Export Citation Format

Share Document