Slotted Channel As A Gasdynamical Source Of Ignition And Flame Stabilization In The Supersonic Combustion Chamber

2016 ◽  
Vol 11 (1) ◽  
pp. 34-44
Author(s):  
Marat Goldfeld ◽  
Yuliya Zakharova ◽  
Alexey Starov ◽  
Konstantin Timofeev

The original scheme of flame stabilization in the channel at close to cocurrent fuel supply for the fuel combustion at a high supersonic speed has been designed. Such solution provides high temperature of a stream in a zone of fuel-air mixture formation. Computational and experimental investigations of self-ignition and combustion of hydrogen were carried out in the model of combustor chamber with slotted channel (gasdynamical source of ignition) at Mach numbers 3.7 and 5.8 at the entrance. Tests have been performed in hot-shot wind tunnel IT-302M of ITAM SB RAS in a mode of the attached pipe. Numerical study has been performed on the basis of solving the full averaged Navier-Stokes equations, supplemented k-Q SST turbulence model. Configuration of the slotted channel has been designed with two variants of exit nozzle: with and without geometrical throat. It has been established that at the channel entrance two vortexes with high temperature have been appeared. Temperature has been keeping high in the channel with geometrical throat and at blocking of the slotted channel without throat. It was found that uniform subsonic stream in the channel with geometrical throat has been realized. The stream in the slotted channel without geometrical throat keeps supersonic but Mach number was lower than in the main channel. The structure of the flow at the slotted channel exit is significantly differs for this both cases.

Author(s):  
J.-H. Jeon ◽  
S.-S. Byeon ◽  
Y.-J. Kim

The Francis turbine is a kind of reaction turbines, which means that the potential energy of water converted to rotational kinetic energy. In this study, the flow characteristics have been investigated numerically in a Francis turbine on the 15 MW hydropower generation with various blade profiles (NACA 65 and NACA 16 series) and discharge angles (14°, 15°, 17°, and 18°), using the commercial code, ANSYS CFX. The k-ω SST turbulence model is employed in the Reynolds averaged Navier-Stokes equations. The computing domain includes the spiral casing, guide vanes, and draft tube, which are discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The results showed that the change of blade profiles and discharge angles significantly influenced the performance of the Francis turbine.


2016 ◽  
Vol 11 (2) ◽  
pp. 46-55
Author(s):  
Olga Vankova ◽  
Marat Goldfeld ◽  
Natalya Fedorova

In the paper, results of mathematical modeling of a flow in the supersonic combustion chamber are presented, which have been performed under the conditions of burning initiation by means of an electronic bunch of high energy on the basis of the offered ignition model. Calculations are carried out on the basis of the Reynolds averaged Navier – Stokes equations supplemented by the k–ω SST turbulence model and detailed chemistry kinetics. As a result of numerical modeling, it has been shown that in a frame of the offered model it is possible to predict the ignition of mixture at low stagnation temperatures. The numerical results confirm the experimental data. It is shown that the choice of the optimum scheme of stabilization and the stabilizer geometry allows one to get the flame propagation over all the channel and to provide the stability of combustion even at high flow Mach numbers. The offered mathematical model has allowed defining the conditions of ignition


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


1996 ◽  
Vol 118 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Mohamed Selmi

This paper is concerned with the solution of the 3-D-Navier-Stokes equations describing the steady motion of a viscous fluid inside a partially filled spinning and coning cylinder. The cylinder contains either a single fluid of volume less than that of the cylinder or a central rod and a single fluid of combined volume (volume of the rod plus volume of the fluid) equal to that of the cylinder. The cylinder rotates about its axis at the spin rate ω and rotates about an axis that passes through its center of mass at the coning rate Ω. In practical applications, as in the analysis and design of liquid-filled projectiles, the parameter ε = τ sin θ, where τ = Ω/ω and θ is the angle between spin axis and coning axis, is small. As a result, linearization of the Navier-Stokes equations with this parameter is possible. Here, the full and linearized Navier-Stokes equations are solved by a spectral collocation method to investigate the nonlinear effects on the moments caused by the motion of the fluid inside the cylinder. In this regard, it has been found that nonlinear effects are negligible for τ ≈ 0.1, which is of practical interest to the design of liquid-filled projectiles, and the solution of the linearized Navier-Stokes equations is adequate for such a case. However, as τ increases, nonlinear effects increase, and become significant as ε surpasses about 0.1. In such a case, the nonlinear problem must be solved. Complete details on how to solve such a problem is presented.


1997 ◽  
Vol 52 (4) ◽  
pp. 358-368 ◽  
Author(s):  
Michio Nishida ◽  
Masashi Matsumotob

Abstract • This paper describes a computational study of the thermal and chemical nonequilibrium occuring in a rapidly expanding flow of high-temperature air transported as a free jet from an orifice into low-density stationary air. Translational, rotational, vibrational and electron temperatures are treated separately, and in particular the vibrational temperatures are individually treated; a multi-vibrational temperature model is adopted. The governing equations are axisymmetric Navier-Stokes equations coupled with species vibrational energy, electron energy and species mass conservation equations. These equations are numerically solved, using the second order upwind TVD scheme of the Harten-Yee type. The calculations were carried out for two different orifice temperatures and also two different orifice diameters to investigate the effects of such parameters on the structure of a nonequilibrium free jet.


Author(s):  
David Gross ◽  
Yann Roux ◽  
Benjamin Rousse ◽  
François Pétrié ◽  
Ludovic Assier ◽  
...  

The problem of Vortex-Induced Vibrations (VIV) on spool and jumper geometries is known to present several drawbacks when approached with conventional engineering tools used in the study of VIV on risers. Current recommended practices can lead to over-conservatism that the industry needs to quantify and minimize within notably cost reduction objectives. Within this purpose, the paper will present a brief critical review of the Industry standards and more particularly focus on both experimental and Computational Fluid Dynamic (CFD) approaches. Both qualitative and quantitative comparisons between basin tests and CFD results for a 2D ‘M-shape’ spool model will be detailed. The results presented here are part of a larger experimental and numerical campaign which considered a number of current velocities, heading and geometry configurations. The vibratory response of the model will be investigated for one of the current velocities and compared with the results obtained through recommended practices (e.g. Shear7 and DNV guidelines). The strategy used by the software K-FSI to solve the fluid-structure interaction (FSI) problem is a partitioned coupling solver between fluid solver (FINE™/Marine) and structural solvers (ARA). FINE™/Marine solves the Reynolds-Averaged Navier-Stokes Equations in a conservative way via the finite volume method and can work on structured or unstructured meshes with arbitrary polyhedrons, while ARA is a nonlinear finite element solver with a large displacement formulation. The experiments were conducted in the BGO FIRST facility located in La Seyne sur Mer, France. Particular attention was paid towards the model design, fabrication, instrumentation and characterization, to ensure an excellent agreement between the structural numerical model and the actual physical model. This included the use of a material with low structural damping, the performance of stiffness and decay tests in air and in still water, plus the rationalization of the instrumentation to be able to capture the response with the minimum flow perturbation or interaction due to instrumentation.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


2013 ◽  
Vol 397-400 ◽  
pp. 783-788
Author(s):  
Xing Wei Zhang ◽  
Chao Wang ◽  
Hang Liu

This paper investigates the aerodynamic forces of several plunging wing models by means of computational fluid dynamics. A finite volume method was used to solve the two-dimensional unsteady incompressible Navier-Stokes equations. The forces and power efficiency have been calculated and compared between sets of different models. Current work found that the nonsymmetrical moving can enhance the lift and thrust forces. The numerical results also prove that the flexible wing model can be use to improve the efficiency and reduce the input. Additionally, a new conceptual model for flapping wing mechanism with active deformation and adaptive nonsymmetrical driving motion is proposed base on the numerical results.


Sign in / Sign up

Export Citation Format

Share Document