scholarly journals A COMPARATIVE STUDY OF FFT ALGORITHMS FOR CONVOLUTION CALCULATION IN NON-PERIODIC ELASTIC CONTACTS

2021 ◽  
Vol 13 (2) ◽  
pp. 7-13
Author(s):  
Delia Cerlinca ◽  
◽  
Sergiu Spinu ◽  
◽  

Department of Mechanics and Technologies, Stefan cel Mare University of Suceava; Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University, Suceava, Romania

2019 ◽  
Vol 11 (1) ◽  
pp. 71-100
Author(s):  
Ihtisham Ali ◽  
Susmit Bagchi

Workflow is an essential mechanism for the automation of processes in distributed transactional systems, including mobile distributed systems. The workflow modeling enables the composition of process activities along with respective conditions, data flow and control flow dependencies. The workflow partitioning methods are used to create sub-partitions by grouping processes on the basis of activities, data flow and control flow dependencies. Mobile distributed systems consisting of heterogeneous computing devices require optimal workflow decomposition. In general, the workflow partitioning is a NP-complete problem. This article presents a comparative study and detailed analysis of workflow decomposition techniques based on graphs, petri nets and topological methods. A complete taxonomy of the basic decomposition techniques is presented. A detailed qualitative and quantitative analysis of these decomposition techniques are explained. The comparative analysis presented in this article provides an insight to inherent algorithmic complexities of respective decomposition approaches. The qualitative parametric analysis would help in determining the suitability of workflow applicability in different computing environments involving static and dynamic nodes. Furthermore, the authors have presented a novel framework for workflow decomposition based on multiple parametric parameters for mobile distributed systems.


Author(s):  
Ihtisham Ali ◽  
Susmit Bagchi

Workflow is an essential mechanism for the automation of processes in distributed transactional systems, including mobile distributed systems. The workflow modeling enables the composition of process activities along with respective conditions, data flow and control flow dependencies. The workflow partitioning methods are used to create sub-partitions by grouping processes on the basis of activities, data flow and control flow dependencies. Mobile distributed systems consisting of heterogeneous computing devices require optimal workflow decomposition. In general, the workflow partitioning is a NP-complete problem. This article presents a comparative study and detailed analysis of workflow decomposition techniques based on graphs, petri nets and topological methods. A complete taxonomy of the basic decomposition techniques is presented. A detailed qualitative and quantitative analysis of these decomposition techniques are explained. The comparative analysis presented in this article provides an insight to inherent algorithmic complexities of respective decomposition approaches. The qualitative parametric analysis would help in determining the suitability of workflow applicability in different computing environments involving static and dynamic nodes. Furthermore, the authors have presented a novel framework for workflow decomposition based on multiple parametric parameters for mobile distributed systems.


Author(s):  
Rocco De Nicola ◽  
Michele Loreti

A new area of research, known as Global Computing, is by now well established. It aims at defining new models of computation based on code and data mobility over wide-area networks with highly dynamic topologies, and at providing infrastructures to support coordination and control of components originating from different, possibly untrusted, fault-prone, malicious or selfish sources. In this paper, we present our contribution to the field of Global Computing that is centred on Kernel Language for Agents Interaction and Mobility ( Klaim ). Klaim is an experimental language specifically designed to programme distributed systems consisting of several mobile components that interact through multiple distributed tuple spaces. We present some of the key notions of the language and discuss how its formal semantics can be exploited to reason about qualitative and quantitative aspects of the specified systems.


2018 ◽  
Vol 06 (02) ◽  
pp. 95-118 ◽  
Author(s):  
Mohammadreza Radmanesh ◽  
Manish Kumar ◽  
Paul H. Guentert ◽  
Mohammad Sarim

Unmanned aerial vehicles (UAVs) have recently attracted the attention of researchers due to their numerous potential civilian applications. However, current robot navigation technologies need further development for efficient application to various scenarios. One key issue is the “Sense and Avoid” capability, currently of immense interest to researchers. Such a capability is required for safe operation of UAVs in civilian domain. For autonomous decision making and control of UAVs, several path-planning and navigation algorithms have been proposed. This is a challenging task to be carried out in a 3D environment, especially while accounting for sensor noise, uncertainties in operating conditions, and real-time applicability. Heuristic and non-heuristic or exact techniques are the two solution methodologies that categorize path-planning algorithms. The aim of this paper is to carry out a comprehensive and comparative study of existing UAV path-planning algorithms for both methods. Three different obstacle scenarios test the performance of each algorithm. We have compared the computational time and solution optimality, and tested each algorithm with variations in the availability of global and local obstacle information.


2021 ◽  
Vol 10 (5) ◽  
pp. 2549-2559
Author(s):  
K.R. Kumar ◽  
E.N. Satheesh ◽  
V.R. Pravitha

Kerala, a southern state of India, has shown better performance in the initial months of the spread of the disease. But in the last few months, the spread of the disease in the state has grown breaking all controls and the control and management system has shown very poor performance. Mathematical modeling of the spread of the disease is effectively is being used in the prediction and control of the disease world over. In this paper, we make a comparative study of the research conducted on this subject based on the compartmental models and social network analysis based models giving special emphasis to Kerala state. We also point out the drawbacks of the current studies in comparison with the intensity of the actual spread of disease.


1939 ◽  
Vol 96 (3) ◽  
pp. 681-688 ◽  
Author(s):  
J. NOTKIN ◽  
C. E. NILES ◽  
F. J. DENATALE ◽  
G. WITTMAN

Author(s):  
Старовойтенко Олексій Володимирович

Due to the growth of data and the number of computational tasks, it is necessary to ensure the required level of system performance. Performance can be achieved by scaling the system horizontally / vertically, but even increasing the amount of computing resources does not solve all the problems. For example, a complex computational problem should be decomposed into smaller subtasks, the computation time of which is much shorter. However, the number of such tasks may be constantly increasing, due to which the processing on the services is delayed or even certain messages will not be processed. In many cases, message processing should be coordinated, for example, message A should be processed only after messages B and C. Given the problems of processing a large number of subtasks, we aim in this work - to design a mechanism for effective distributed scheduling through message queues. As services we will choose cloud services Amazon Webservices such as Amazon EC2, SQS and DynamoDB. Our FlexQueue solution can compete with state-of-the-art systems such as Sparrow and MATRIX. Distributed systems are quite complex and require complex algorithms and control units, so the solution of this problem requires detailed research.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Jae H. Chung ◽  
Changhoon Kim

This paper discusses the modeling and control of a robotic manipulator with a new deburring tool, which integrates two pneumatic actuators to take advantage of a double cutting action. A coordination control method is developed by decomposing the robotic deburring system into two subsystems; the arm and the deburring tool. A decentralized control approach is pursued, in which suitable controllers were designed for the two subsystems in the coordination scheme. In simulation, three different tool configurations are considered: rigid, single pneumatic and integrated pneumatic tools. A comparative study is performed to investigate the deburring performance of the deburring arm with the different tools. Simulation results show that the developed robotic deburring system significantly improves the accuracy of the deburring operation.


Sign in / Sign up

Export Citation Format

Share Document