scholarly journals Structural, elastic, electronic and optical properties of the half-Heusler ScPtSb and YPtSb compounds under pressure

2021 ◽  
Vol 24 (4) ◽  
pp. 43702
Author(s):  
M. Radjai ◽  
A. Bouhemadou ◽  
D. Maouche

First-principles calculations using the plane-wave pseudopotential method within the generalized gradient approximation method were performed to study the pressure dependence of the structural, elastic, electronic and optical properties for the half-Heusler compounds ScPtSb and YPtSb in a cubic MgAgAs-type structure. The calculations were performed with the inclusion of spin-orbit coupling. The calculated equilibrium lattice parameters are in good agreement with the available experimental and theoretical values. The crystal rigidity and mechanical stability were discussed using the elastic constants and related parameters, namely bulk modulus, shear modulus, Debye temperature, Poisson's coefficient, Young's modulus and isotropic sound velocities. The calculated electronic band structures show that ScPtSb has an indirect gap of Γ-X type, whereas YPtSb has a direct band gap of Γ-Γ type. Furthermore, the effect of pressure on the optical properties, namely the dielectric function, absorption spectrum, refractive index, extinction coefficient, reflectivity and energy-loss spectrum is investigated for both compounds ScPtSb and YPtSb.

2011 ◽  
Vol 25 (01) ◽  
pp. 41-52 ◽  
Author(s):  
ZI-JIANG LIU ◽  
CAI-RONG ZHANG ◽  
XIAO-WEI SUN ◽  
LU WANG ◽  
TING SONG ◽  
...  

First principles studies of structural, elastic, electronic and optical properties of tetragonal CaSiO3perovskite under pressure are reported using the pseudopotential plane wave method within the local density approximation (LDA). The calculated equilibrium lattice is in good agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that tetragonal CaSiO3perovskite is a direct band gap material. In order to understand the optical properties of tetragonal CaSiO3perovskite, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 40 eV. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of tetragonal CaSiO3perovskite, and it still awaits experimental confirmation.


Author(s):  
Rashid Khan ◽  
Kaleem Ur Rahman ◽  
Qingmin Zhang ◽  
Altaf Ur Rahman ◽  
Sikander Azam ◽  
...  

Abstract Using first-principles calculations, the effects of Yb$^{2+}$ substitutional doping on structural, electronic, and optical properties of a series of perovskite compounds CsCaX$_3$ (X: Cl, Br, I), have been investigated. We employed generalized gradient approximation (GGA) and HSE hybrid functional to study the electronic and optical properties. A series of pristine CsCaX$_3$(X: Cl, Br, I) is characterized as a non-magnetic insulator with indirect bandgap perovskite materials. These phosphor materials are suitable candidates for doping with lanthanide series elements to tune their electronic bandgaps according to our requirements because of their wide bandgaps. The calculated electronic bandgaps of CsCaX$_3$ (X: Cl, Br, I) are 3.7 eV(GGA) and 4.5 eV (HSE) for CsCaI$_3$, 4.5 eV (GGA) and 5.3 eV (HSE) for CsCaBr$_3$, and 5.4 eV (GGA) and 6.4 eV (HSE) for CsCaCl$_3$. According to formation energies, the Yb$^{2+}$ doped at the Ca-site is thermodynamically more stable as compared to all possible atomic sites. The electronic band structures show that the Yb$^{2+}$ doping induces defective states within the bandgaps of pristine CsCaX$_3$. As a result, the Yb$^{2+}$ doped CsCaX$_3$ (X: Cl, Br, I) become the direct bandgap semiconductors. The defective states above the VBM are produced due to the $f$-orbital of the Yb atom. The impurity states near the CBM are induced due to the major contribution of $d$-orbital of the Yb atom and the minor contribution of $s$-orbital of the Cs atom. The real and imaginary parts of the dielectric function, optical reflectivity, electron energy loss spectrum, extinction coefficient, and refractive index of pristine and Yb$^{2+}$ doped CsCaX$_3$ were studied. The optical dispersion results of dielectric susceptibility closely match their relevant electronic structure and align with previously reported theoretical and experimental data. We conclude that the Yb$^{2+}$ doped CsCaX$_3$ (X: Cl, Br, I) are appealing candidates for optoelectronic devices.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 342 ◽  
Author(s):  
Hamid M. Ghaithan ◽  
Zeyad A. Alahmed ◽  
Andreas Lyras ◽  
Saif M. H. Qaid ◽  
Abdullah S. Aldwayyan

The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were used to study the electronic and optical properties. The band gaps calculated using the mBJ-GGA method gave the best agreement with experimentally reported values. CsPb(I1−xBrx)3 compounds were wide and direct band gap semiconductors, with a band gap located at the M point. The spectral weight (SW) approach was used to unfold the band structure. By substituting iodide with bromide, an increase in the band gap energy (Eg) values of 0.30 and 0.55 eV, using PBE-GGA and mBJ-GGA potentials, respectively, was observed, whereas the optical property parameters, which were also investigated, demonstrated the reverse effect. The high absorption spectra in the ultraviolet−visible energy range demonstrated that CsPb(I1−xBrx)3 perovskite could be used in optical and optoelectronic devices by partly replacing iodide with bromide.


2013 ◽  
Vol 27 (19) ◽  
pp. 1350100 ◽  
Author(s):  
S. M. ALAY-E-ABBAS ◽  
S. YOUNAS ◽  
S. HANIF ◽  
M. SHARIF ◽  
IQBAL HUSSAIN ◽  
...  

First-principles total energy calculations have been performed using full potential linear-augmented-plane-wave method within the framework of density functional theory to study the structural, electronic, magnetic and optical properties of the Pb 1-x Eu x Se and Pb 1-x Eu x Te (0 ≤ x ≤1) alloys in the ferromagnetic (FM) ordering. The calculations have been extended to treat the strongly localized f electrons of Eu atom by the self-interaction correction (SIC) approach. For structural optimization, the Wu and Cohen generalized gradient approximation (GGA) functional has been used, whereas for calculating electronic properties, the GGA parameterization scheme formulated by Engel and Vosko (EV) has also been utilized. It has been observed that the use of experimental value of Coulomb parameter (Uf- expt. ) within the SIC does not yield an accurate EuSe and EuTe energy band structure. The improvement in the electronic band structures of nonmagnetic PbSe / PbTe and ferromagnetic EuSe / EuTe have been achieved by considering the effects of spin–orbit coupling for Pb atoms, by a suitable choice of U and by treating the U values for Eu atom's f and d electrons as parameters. The electronic and optical properties of FM Pb 1-x Eu x Se in agreement with experiments can be achieved by combining EV GGA with a Hubbard U < Uf- expt. , however, a stronger and stable AFM coupling in EuTe leaves the above scheme unable to provide good electronic structure of FM Pb 1-x Eu x Te . In case of Pb 1-x Eu x Se the nonlinear behaviour of electronic structure is reflected in the optical properties of Eu -doped PbSe that have been studied in terms of incident photons' energy dependent complex dielectric function.


Author(s):  
Nabil Beloufa ◽  
Youcef Chechab ◽  
Souad Louhibi-Fasla ◽  
Abbes Chahed ◽  
Samir Bekheira ◽  
...  

Abstract We use FP-LAPW method to study structural, electronic, and optical properties of the pure and Y-doped SnO2. The results show that by Y doping of SnO2 the band gaps are broadened, and still direct at Γ-point. For pure SnO2 material, the obtained values of the direct band gap are 0.607 eV for GGA-PBE and 2.524 eV for GGATB-mBJ, respectively. This later is in good agreement with the experimental data and other theoretical results. The Fermi level shifts into the valence band and exhibits p-type semiconductor character owing mainly from the orbital 4d-Y. Additionally, the calculated optical properties reveal that all concentrations are characterized by low reflectivity and absorption via wavelength λ (nm) in the visible light and near-infrared (NIR) ranges, which leads to a redshift in the optical transparency.


Open Physics ◽  
2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Zhenbao Feng ◽  
Haiquan Hu ◽  
Shouxin Cui ◽  
Wenjun Wang ◽  
Canyun Lu

AbstractThe electronic and optical properties of InAs in core-level spectra are calculated using the full-potential linearized augmented plane wave plus local orbitials (FP-LAPW +lo) method. The real and imaginary parts of the dielectric function ε(ω), the optical absorption coefficient I(ω), the reflectivity R(ω), the refractive index n(ω), and the extinction coefficient k(ω)are calculated. All these values are in good agreement with the experimental data. The effect of spin-orbit coupling on optical properties is also investigated and found to be quite small.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2057 ◽  
Author(s):  
Areej Shawahni ◽  
Mohammed Abu-Jafar ◽  
Raed Jaradat ◽  
Tarik Ouahrani ◽  
Rabah Khenata ◽  
...  

The structural, mechanical, electronic and optical properties of SrTMO3 (TM = Rh, Zr) compounds are investigated by using first principle calculations based on density functional theory (DFT). The exchange-correlation potential was treated with the generalized gradient approximation (GGA) for the structural properties. Moreover, the modified Becke-Johnson (mBJ) approximation was also employed for the electronic properties. The calculated lattice constants are in good agreement with the available experimental and theoretical results. The elastic constants and their derived moduli reveal that SrRhO3 is ductile and SrZrO3 is brittle in nature. The band structure and the density of states calculations with mBJ-GGA predict a metallic nature for SrRhO3 and an insulating behavior for SrZrO3. The optical properties reveal that both SrRhO3 and SrZrO3 are suitable as wave reflectance compounds in the whole spectrum for SrRhO3 and in the far ultraviolet region (FUV) for SrZrO3.


2014 ◽  
Vol 894 ◽  
pp. 254-258
Author(s):  
Rong Zhen Chen ◽  
Clas Persson

In this work, the electronic structure and dielectric function of chalcopyrite CuInSe2 are presented. The results are based on the full-potential linearized augmented plane wave (FPLAPW) method using the generalized gradient approximation (GGA) plus an onsite Coulomb interaction U of the Cu d states. The dielectric constant, absorption coefficient and refractive index are explored by means of optical response. The spin-orbit coupling effect is considered for the calculations of electronic structure and optical properties. We find that the results based on our calculation method have good agreement compared with experimental and other earlier simulations results.


2017 ◽  
Vol 35 (1) ◽  
pp. 32-39
Author(s):  
K. Benchikh ◽  
H. Abid ◽  
M. Benchehima

AbstractThe empirical pseudopotential method (EPM) within the virtual crystal approximation (VCA) is used to calculate the electronic and optical properties of ternary alloys ZnxCd1−xS, ZnxCd1−xSe, ZnSxSe1−x and MgxZn1−xSe. The alloy band structures and energy gaps are calculated using VCA which incorporates the compositional disorder as an effective potential. The calculated band structures for the ZnxCd1−xS, ZnxCd1−xSe and ZnSxSe1−x alloys show a direct band gap in the whole range of the concentration except for the MgxZn1−xSe alloy which presents a crossover from the direct gap to the indirect one.Also the dependence of the refractive index on the concentration is calculated for each ternary alloy. This parameter is found to depend nonlinearly on the alloy concentration. A detailed comparison of our results with experimental data and works of other authors has led to a good agreement.


2012 ◽  
Vol 26 (32) ◽  
pp. 1250199 ◽  
Author(s):  
M. HARMEL ◽  
H. KHACHAI ◽  
M. AMERI ◽  
R. KHENATA ◽  
N. BAKI ◽  
...  

Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3( A = Cs ; M = Ca and Sr ) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.


Sign in / Sign up

Export Citation Format

Share Document