scholarly journals Shear wave elastography parameters of normal soft tissues of the neck

2017 ◽  
Vol 161 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Jan Herman ◽  
Zuzana Sedlackova ◽  
Jaromir Vachutka ◽  
Tomas Furst ◽  
Richard Salzman ◽  
...  
2018 ◽  
Vol 1 (1) ◽  
pp. 14-22
Author(s):  
Marketa Zemanova

Shear Wave Elastography (SWE) is a non-invasive diagnostic imaging technique, that maps the elastic properties of tissues. Nowadays this modality develops increasingly in medicine across its disciplines and opens a new era of high-quality ultrasound examination because it increases the specificity and thus improves diagnostic assurance. This method is similar to manual palpation, shows elastic properties of biological tissues and provides a kind of reconstruction of the internal structure of soft tissues based on measurement of the response of tissue compression. Results: This method is already used routinely in the detection and diagnosis of breast cancer and thyroid cancer, prostate cancer, in hepatology, cardiology, view of the carotid arteries and lymphatic nodules. Standards of elasticity values for human tissues such as the mammary gland, liver, prostate or thyroid gland are progressively being created across the medical fields. Finally, the article examines its unquestioned benefit in ophthalmology. In ophthalmology, it already appears as an up-and-coming method in diagnostics and in evaluating the changes in oculomotor muscles and orbital tissues in patients with endocrine orbitopathy. Conclusion: Shear wave elastography offers three main innovations: the quantitative aspect, dimensional resolution, and real-time imaging ability. Determination of the utilization rate of this method and its inclusion into the diagnostics of endocrine orbitopathy is still a question and the subject of presently conducted clinical studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hongliang Li ◽  
Guillaume Flé ◽  
Manish Bhatt ◽  
Zhen Qu ◽  
Sajad Ghazavi ◽  
...  

Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.


2021 ◽  
Vol 11 (7) ◽  
pp. 2992
Author(s):  
Christopher Edwards ◽  
Erika Cavanagh ◽  
Sailesh Kumar ◽  
Vicki Clifton ◽  
Davide Fontanarosa

The availability of 2-Dimensional Shear Wave Elastography (2D-SWE) technology on modern medical ultrasound systems is becoming increasingly common. The technology is now being used to investigate a range of soft tissues and related pathological conditions. This work investigated the reliability of a single commercial 2D-SWE system using a tissue-mimicking elastography phantom to understand the major causes of intra-system variability. Sources of shear wave velocity (SWV) measurement variability relates to imaging depth, target stiffness, sampling technique and the operator. Higher SWV measurement variability was evident with increasing depth and stiffness of the phantom targets. The influence of the operator was minimal, and variations in sampling technique had little impact on the SWV.


2020 ◽  
Vol 148 (4) ◽  
pp. 2598-2598
Author(s):  
Matthew W. Urban ◽  
Piotr Kijanka ◽  
Benjamin Wood ◽  
Robert J. McGough

2021 ◽  
Vol 8 ◽  
Author(s):  
Juvenal Ormachea ◽  
Fernando Zvietcovich

There are a variety of approaches used to create elastography images. Techniques based on shear wave propagation have received significant attention. However, there remain some limitations and problems due to shear wave reflections, limited penetration in highly viscous media, requirements for prior knowledge of wave propagation direction, and complicated propagation in layers where surface acoustic waves and guided waves are dominant. To overcome these issues, reverberant shear wave elastography (RSWE) was proposed as an alternative method which applies the concept of a narrow-band diffuse field of shear waves within the tissue. Since 2017, the RSWE approach has been implemented in ultrasound (US) and optical coherence tomography (OCT). Specifically, this approach has been implemented in these imaging modalities because they are similar in image formation principles and both share several approaches to estimate the biomechanical properties in tissues. Moreover, they cover different spatial-scale and penetration depth characteristics. RSWE has shown promising results in the elastic and viscoelastic characterization of multiple tissues including liver, cornea, and breast. This review summarizes the 4-year progress of the RSWE method in US and OCT. Theoretical derivations, numerical simulations, and applications in ex vivo and in vivo tissues are shown. Finally, we emphasize the current challenges of RSWE in terms of excitation methods and estimation of biomechanical parameters for tissue-specific cases and discuss future pathways for the in vivo and in situ clinical implementations.


Author(s):  
Anders Batman Mjelle ◽  
Anesa Mulabecirovic ◽  
Roald Flesland Havre ◽  
Edda Jonina Olafsdottir ◽  
Odd Helge Gilja ◽  
...  

Abstract Purpose Liver elastography is increasingly being applied in screening for and follow-up of pediatric liver disease, and has been shown to correlate well with fibrosis staging through liver biopsy. Because time is of the essence when examining children, we wanted to evaluate if a reliable result can be achieved with fewer acquisitions. Materials and Methods 243 healthy children aged 4–17 years were examined after three hours of fasting. Participants were divided into four age groups: 4–7 years; 8–11 years; 12–14 years and 15–17 years. Both two-dimensional shear wave elastography (2D-SWE; GE Logiq E9) and point shear wave elastography (pSWE; Samsung RS80A with Prestige) were performed in all participants, while transient elastography (TE, Fibroscan) was performed in a subset of 87 children aged 8–17 years. Median liver stiffness measurement (LSM) values of 3, 4, 5, 6, 7, and 8 acquisitions were compared with the median value of 10 acquisitions (reference standard). Comparison was performed for all participants together as well as within every specific age group. We investigated both the intraclass correlation coefficient (ICC) with absolute agreement and all outliers more than 10 %, 20 % or ≥ 0.5 or 1.0 kPa from the median of 10 acquisitions. Results For all three systems there was no significant difference between three and ten acquisitions, with ICCs ≥ 0.97. All systems needed 4 acquisitions to achieve no LSM deviating ≥ 1.0 kPa of a median of ten. To achieve no LSM deviating ≥ 20 % of a median of ten acquisitions, pSWE and TE needed 4 acquisitions, while 2D-SWE required 6 acquisitions. Conclusion Our results contradict recommendations of 10 acquisitions for pSWE and TE and only 3 for 2D-SWE.


Sign in / Sign up

Export Citation Format

Share Document