scholarly journals Simulating the hydrocarbon waste pyrolysis in reactors of various designs

Author(s):  
O. A. Kolenchukov ◽  
◽  
E. A. Petrovsky ◽  
K. A. Bashmur ◽  
V. S. Tynchenko ◽  
...  

The study presents a simulation of pyrolysis reactors of various designs performed in the COMSOL Multiphysics software package. The non-isothermal flow (k–ε turbulent flow) module is used. The advantages this technique has over other commonly used ones are shown. The results indicate that under the same conditions, heating in sectional reactors is more intense. To achieve optimal results, the coolant flow rate in new reactors maybe by an order of magnitude less compared to the conventional design. The use of sectional reactors for multi-flow processing of hydrocarbon waste is advisable. Keywords: sectional reactor; pyrolysis; hydrocarbon waste; heat transfer; turbulent flow.

2021 ◽  
Author(s):  
Matt Harrison ◽  
Joshua Gess

Abstract Using Particle Image Velocimetry (PIV), the amount of fluid required to sustain nucleate boiling was quantified to a microstructured copper circular disk. Having prepared the disk with preferential nucleation sites, an analytical model of the net coolant flow rate requirements to a single site has been produced and validated against experimental data. The model assumes that there are three primary phenomena contributing to the coolant flow rate requirements at the boiling surface; radial growth of vapor throughout incipience to departure, bubble rise, and natural convection around the periphery. The total mass flowrate is the sum of these contributing portions. The model accurately predicts the quenching fluid flow rate at low and high heat fluxes with 4% and 30% error of the measured value respectively. For the microstructured surface examined in this study, coolant flow rate requirements ranged from 0.1 to 0.16 kg/sec for a range of heat fluxes from 5.5 to 11.0 W/cm2. Under subcooled conditions, the coolant flow rate requirements plummeted to a nearly negligible value due to domination of transient conduction as the primary heat transfer mechanism at the liquid/vapor/surface interface. PIV and the validated analytical model could be used as a test standard where the amount of coolant the surface needs in relation to its heat transfer coefficient or thermal resistance is a benchmark for the efficacy of a standard surface or boiling enhancement coating/surface structure.


1976 ◽  
Vol 98 (3) ◽  
pp. 387-394 ◽  
Author(s):  
E. M. Sparrow ◽  
Leonardo Goldstein

Measurements were performed to determine the local heat transfer coefficients along the heated shroud of a shrouded parallel disk system. The temperature field within the enclosure formed by the shroud and the disks was also measured. One of the disks was rotating, whereas the other disk and the shroud were stationary. Coolant air was introduced into the enclosure through an aperture at the center of the stationary disk and exited through a slot at the rim of the rotating disk. The coolant entrance-exit arrangement differed from that of previous studies, with the additional difference that the incoming coolant stream was free of rotation. The coolant flow rate, the disk rotational speed, and the aspect ratio of the enclosure were varied during the experiments. The heat transfer coefficients were found to be increasingly insensitive to the absence or presence of rotation as the coolant flow rate increased. There was a general increase of the transfer coefficients with increasing coolant flow rate, especially for low rotational speeds. The temperature field in the enclosure differed markedly depending on the relative importance of rotation and of coolant throughflow. When the latter dominates, the temperature in the core is relatively uniform, but in the presence of strong rotation there are significant nonuniformities. A comparison was made between the present Nusselt number results and those of prior experiments characterized by different coolant entrance—exit arrangements. The positioning of the coolant exit slot relative to the direction of the boundary layer flow on the shroud emerged as an important factor in the comparison.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

The independent influences of vane trailing edge and purge cooling are studied in detail for a one-and-one-half stage transonic high-pressure turbine operating at design-corrected conditions. This paper builds on the conclusions of Part I, which investigated the combined influence of all cooling circuits. Heat-flux measurements for the airfoil, platform, tip, and root of the turbine blade, as well as the shroud and the vane side of the purge cavity, are used to track the influence of cooling flow. By independently varying the coolant flow rate through the vane trailing edge or purge circuit, the region of influence of each circuit can be isolated. Vane trailing edge cooling is found to create the largest reductions in blade heat transfer. However, much of the coolant accumulates on the blade suction surface and little influence is observed for the pressure surface. In contrast, the purge cooling is able to cause small reductions in heat transfer on both the suction and pressure surfaces of the airfoil. Its region of influence is limited to near the hub, but given that the purge coolant mass flow rate is 1/8 that of the vane trailing edge, it is impressive that any impact is observed at all. The cooling contributions of these two circuits account for nearly all of the cooling reductions observed for all three circuits in Part I, indicating that the vane inner cooling circuit that feeds most of the vane film-cooling holes has little impact on the downstream blade heat transfer. Time-accurate pressure measurements provide further insight into the complex interactions in the purge region that govern purge coolant injection. While the pressures supplying the purge coolant and the overall coolant flow rate remain fairly constant, the interactions of the vane pressure field and the rotor pressure field create moving regions of high pressure and low pressure at the exit of the cavity. This results in pulsing regions of injection and ingestion.


Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

The independent influences of vane trailing edge and purge cooling are studied in detail for a one-and-one-half stage transonic high-pressure turbine operating at design corrected conditions. This paper builds on the conclusions of Part I, which investigated the combined influence of all cooling circuits. Heat-flux measurements for the airfoil, platform, tip, and root of the turbine blade as well as the shroud and the vane side of the purge cavity are used to track the influence of cooling flow. By independently varying the coolant flow rate through the vane trailing edge or purge circuit, the region of influence of each circuit can be isolated. Vane trailing edge cooling is found to create the largest reductions in blade heat transfer. However, much of the coolant accumulates on the blade suction surface and little influence is observed for the pressure surface. In contrast, the purge cooling is able to cause small reductions in heat transfer on both the suction and pressure surfaces of the airfoil. Its region of influence is limited to near the hub, but given that the purge coolant mass flow rate is 1/8th that of the vane trailing edge, it is impressive that any impact is observed at all. The cooling contributions of these two circuits account for nearly all of the cooling reductions observed for all three circuits in Part I, indicating that the vane inner cooling circuit that feeds most of the vane film-cooling holes has little impact on the downstream blade heat transfer. Time-accurate pressure measurements provide further insight into the complex interactions in the purge region that govern purge coolant injection. While the pressures supplying the purge coolant and the overall coolant flow rate remain fairly constant, the interactions of the vane pressure field and the rotor pressure field create moving regions of high pressure and low pressure at the exit of the cavity. This results in pulsing regions of injection and ingestion.


2011 ◽  
Vol 204-210 ◽  
pp. 2023-2026
Author(s):  
Ka Lin Su ◽  
Jing Liu ◽  
Jun Rong ◽  
Jun Hua Wan

A novel porous micro heat sink system was presented for dissipating high heat fluxes of electronic device. The flow and heat transfer of porous micro heat sink was investigated by experiment at the condition of high heat fluxes, and the results showed that the heat load of up to 280W was removed by the heat sink, and the heater junction temperature was 63.8°C at the coolant flow rate of 5.1cm3/s. The whole heat transfer coefficient of heat sink increased with the increases of coolant flow rate and heat load, and the maximal heat transfer coefficient was 33kW(m2.°C)-1 in the experiment. The minimum value of 0.19°C/W for whole thermal resistance of heat sink was achieved at flow rate of 5.1cm3/s, and increasing of coolant flow rate and heat fluxes could decrease the thermal resistance.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Liming Song ◽  
Qing Gao ◽  
Xin Yan ◽  
...  

The modern gas turbine is widely applied in the aviation propulsion and power generation. The rim seal is usually designed at the periphery of the wheel-space and prevented the hot gas ingestion in modern gas turbines. The high sealing effectiveness of rim seal can improve the aerodynamic performance of gas turbines and avoid of the disc overheating. Effect of outer fin axial gap of radial rim seal on the sealing effectiveness and fluid dynamics was numerically investigated in this work. The sealing effectiveness and fluid dynamics of radial rim seal with three different outer fin axial gaps was conducted at different coolant flow rates using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and SST turbulent model solutions. The accuracy of the presented numerical approach for the prediction of the sealing performance of the turbine rim seal was demonstrated. The obtained results show that the sealing effectiveness of radial rim seal increases with increase of coolant flow rate at the fixed axial outer fin gap. The sealing effectiveness increases with decrease of the axial outer fin gap at the fixed coolant flow rate. Furthermore, at the fixed coolant flow rate, the hot gas ingestion increases with the increase of the axial outer fin gap. This flow behavior intensifies the interaction between the hot gas and coolant flow at the clearance of radial rim seal. The preswirl coefficient in the wheel-space cavity is also illustrated to analyze the flow dynamics of radial rim seal at different axial outer fin gaps.


2015 ◽  
Vol 1095 ◽  
pp. 846-850
Author(s):  
Min Wang ◽  
Ke Ping Zhang ◽  
Feng Wei Zhang

In order to study the law between the internal coolant flow rate and the temperature of milling roller, the temperature field of water-cooled roller was simulated with Fluent software. The results showed that with the increase of the coolant flow rate, the temperature on roller surface decreased, but after the flow rate of coolant increased to 3.5 kg/s, the temperature of roller maintained invariant almost, so 3.5 kg/s was the best flow rate.


Author(s):  
K. Asgar Ali ◽  
Quamber H. Nagpurwala ◽  
Abdul Nassar ◽  
S. V. Ramanamurthy

This paper deals with the numerical investigations on a low pressure axial turbine stage to assess the effect of variation in rotor tip clearance and tip coolant ejection rate on the end wall losses. The rotor, along with the NGV, was modeled to represent the entire turbine stage. The CFX TASCflow software was used to perform steady state analysis for different rotor tip clearances and different tip coolant ejection rates. The locations of the cooling slots were identified on the blade tip and the coolant ejection rate was specified at these areas. The simulations were carried out with tip clearances of 0%, 1% and 2% of blade height and ejection flow rates of 0.5%, 0.75% and 1% of main turbine flow rate. It is shown that the size and strength of the leakage vortex is directly related to the tip clearance. The reduction in efficiency is not in linearity with the tip clearance owing to the effect of boundary layer growth on the end walls. Introduction of the tip coolant flow shows increased total–total efficiency compared to that of the uncooled tip. This is attributed to a reduction in the strength of the leakage vortex due to reduced cross-flow over the tip clearance from pressure surface to suction surface. At a coolant flow rate of 0.75% of the main flow rate, there is significant increase in efficiency of about 0.5%. Optimum tip clearance and coolant flow rate are obtained based on the results of the present analysis.


Sign in / Sign up

Export Citation Format

Share Document