scholarly journals Effect of Ethyl Cellulose Content on Release Profile and Pharmacodynamics of Fenoprofen Microparticles

2019 ◽  
Vol 53 (3) ◽  
pp. 446-456 ◽  
Author(s):  
Yomna Abdelkarim Aboueisha ◽  
Shadeed Gad ◽  
Waleed Fathy Khalil ◽  
Eman Ali Ahmed ◽  
Mamdouh Mostafa Ghorab
Cellulose ◽  
2019 ◽  
Vol 27 (3) ◽  
pp. 1573-1589 ◽  
Author(s):  
Shiva Homaee Borujeni ◽  
Seyedeh Zahra Mirdamadian ◽  
Jaleh Varshosaz ◽  
Azade Taheri

2021 ◽  
Vol 11 (5-S) ◽  
pp. 100-107
Author(s):  
M. Pradeep Kumar ◽  
Goparaju Suryanarayana Murthy ◽  
Annamdasu Lakshmi Poojitha ◽  
P. Sindhuri ◽  
A Sreekanth ◽  
...  

The study on the effect of polymer concentration on in vitro drug release profile revealed that there is a change in vitro drug release parameters (t50, t80, and MDT) with a change in polymer concentration. Fraction of HPMC K4M, HPMC K 100 M, and Ethyl Cellulose were required to be 15, 10, and 7 mg respectively for designing optimized batch F7. The release rate of Colchicine decreased proportionally with an increase in the concentration of ethyl Cellulose and HPMC K100 M. Also the high amount of HPMC K4M leads to the less initial release and sustain effect. A theoretical drug release profile was generated using pharmacokinetic parameters of Colchicine. The value of t50 and t80 of theoretical drug release profile was found to be 242 min and 529 min respectively. The similarity factor f2 was applied between the in vitro drug release profile of optimizing batches and theoretical profile, which indicate a decent similarity between all in vitro drug release profiles (f2 = 68.28 for F7). All the batches except F1shows the value of f2 value within a range. Batch F7 showed the highest f2 (f2 = 68.28) among all the batches and this similarity was also reflected in t50 (≈ 256 min) and t80 (≈ 554 min) values. A 23 full factorial design was applied to systemically optimize in vitro drug release profile. The HPMC K4M (X1), Concentration of HPMC K100 M (X2), and concentration of EC (X3) were selected as independent variables. The time required for 50% drug released (t50), the time required for 80% drug release (t80), similarity factor f2, and mean dissolution time (MDT) were selected as dependent variables. The results of full factorial design indicate that the HPMC K4M (X1), Concentration of HPMC K100 M (X2), and concentration of EC (X3) have a significant effect on in vitro drug release profile. To find out the release mechanism the in vitro release data were fitted in the Korsmeyer-Peppas equation. All Batches except F1 and F3 show Anomalous diffusion-controlled release (combined mechanism of diffusion and case II transport).  


Author(s):  
ANITA SUKMAWATI ◽  
SETYO NURWAINI ◽  
UMI BUDI RAHAYU ◽  
APRILIANA P. C. WIDAWAN ◽  
ANITA SAFITRI ◽  
...  

Objective: The objective of this research is to evaluate the ability of ethyl cellulose (EC) microparticle to protect the beetroot (Beta vulgaris, Linn) active substance. In addition, this research also investigates the effect of polymer concentration during microparticle preparation toward physical characteristics of microparticle, release profile of betanin as well as antioxidant activity of microparticle. Methods: The microparticle was produced using the emulsification method using various concentrations of EC in the organic phase and beetroot extract as the active substances. The physical characterization was carried out including the imaging of microparticle using scanning electron microscope (SEM), zeta potential and encapsulation efficiency (EE). The stability test for an active substance in microparticle was carried out at temperature 40 °C for 28 d. The release profile was evaluated using the dissolution method and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH).Results: The result showed that the EC concentration strongly influenced the physical characteristics and EE of beetroot extract in microparticle. The microparticles also had good protection for betanin during storage. The release of active substance from microparticle following Higuchi kinetic. The highest antioxidant activity was found in the microparticle using EC 20%. Conclusion: The EC microparticle is the potential to protect the degradation of antioxidant substance from natural product. However, the physical properties, EE, the ability to prevent degradation of active substance, release rate and antioxidant activity, are strongly influenced by the EC polymer concentration during microparticle preparation.


Author(s):  
Kiran Kumar Vangara ◽  
Kishore K. Konda ◽  
Shiva K. Ravula ◽  
Pradeep K Vuppala ◽  
Vijay K. Sripuram ◽  
...  

It is challenging to develop a controlled release (CR) formulation for a freely water soluble drug molecule without using rate controlling polymers in the core matrix. This study is aimed to develop and evaluate cost-effective ethyl cellulose (EC)-polyvinyl pyrrolidone (PVP) film coating that can effectively control the release of freely water soluble drug, metoprolol succinate (MS) and to match that of release profile with its marketed tablet. Simple core tables of MS were compressed and coated with a solution composed of hydrophobic rate controlling polymer, EC and water soluble pore forming polymer, PVP. The effect of formulation parameters such as the ratio of EC to PVP and tablet coating weight gain on the in-vitro drug release were evaluated. Release profile of the optimized formulation at different pH conditions was determined and the similarity factor (f2) with marketed release profile was calculated.It was observed that drug release rate increased with a decrease in the ratio of ethyl cellulose to PVP and decreased with increased weight gain of the coating membrane. Among all the formulations, the formulation with EC and PVP at a ratio of 60:40 %w/w and 9% weight gain showed matching release profile to marketed tablet with f2 value of 72.25. The optimized formulation showed pH independent in-vitro release. This study successfully demonstrated that EC-PVP film coating can effectively control the release rate of freely soluble drugs. Once a day CR formulation of metoprolol succinate pharmaceutically equivalent to marketed tablet was developed.  


2013 ◽  
Vol 1 (04) ◽  
pp. 64-70
Author(s):  
Renu Dinkar ◽  
Govind Mohan ◽  
Kumud Upadhyaya

Pulsatile release profile is characterized by a lag time followed by rapid and complete drug release. Pulsatile drug delivery systems are classified into time-controlled and site-specific delivery systems. The lag time is taken as the time of less than 10% drug release. The objective of present study was to develop a pulsatile compression coated tablet. The system was developed into two steps i.e. firstly core tablet was prepared containing Nifidipine; secondly core tablet was coated with polymer blend of ethyl cellulose (water insoluble polymer) and Eudragit L 100 (Enteric polymer). From the study it was concluded that the formulation having a coating level of 50% w/w of core and weight ratio of ethyl cellulose to Eudragit L 100 (20%) showed lesser release profile as compared to other formulation i.e. 52.83% in 12hrs. As we increase the weight ratio of ethyl cellulose to Eudragit L 100 better entrapment of drug leading to controlled release of drug.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sara Salatin ◽  
Mitra Jelvehgari

Background: Background: Metformin hydrochloride (MH) is an oral anti-hyperglycemic agent belonging to the biguanide class of drugs. Objective: The present study involves the formulation and evaluation of gastro-retentive floating microparticles containing MH as a model drug for the prolongation of absorption time. Methods: Three levels of a three-factor, Box-Behnken design were used to evaluate the critical formulation variables. Microparticles were prepared using a water-in-oil-in-water double-emulsion solvent evaporation method and examined in terms of production yield, particle size, entrapment efficiency, floating ability, morphology, FTIR (Fourier transform infrared spectroscopy), and in vitro drug release. Results: The optimum conditions for preparing MH microparticles were predicted to be the content of ethyl cellulose content (150 mg), poly (ε-caprolactone) (150 mg), and polyvinyl alcohol (1 %w/v). The optimized MH microparticles were found to be spherical with a mean size of 350.2 µm. Entrapment efficiency was 58.62% for microparticles. 63.94% of microparticles showed floating properties. The FTIR analysis confirmed no chemical linkage between microparticle components. In vitro release study showed a controlled release for up to 8h. Conclusion: These results demonstrated that MH microparticles, as a drug delivery system, may be useful to achieve a controlled drug release profile suitable for oral administration and may help to reduce the dose of drug and to improve patient compliance.


2013 ◽  
Vol 458 (1) ◽  
pp. 218-223 ◽  
Author(s):  
Mariagrazia Marucci ◽  
Helene Andersson ◽  
Johan Hjärtstam ◽  
Gary Stevenson ◽  
Julia Baderstedt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document