scholarly journals New Flexible Regression Models Generated by Gamma Random Variables with Censored Data

2016 ◽  
Vol 5 (3) ◽  
pp. 9 ◽  
Author(s):  
Elizabeth M. Hashimoto ◽  
Gauss M. Cordeiro ◽  
Edwin M.M. Ortega ◽  
G.G. Hamedani

We propose and study a new log-gamma Weibull regression model. We obtain explicit expressions for the raw and incomplete moments, quantile and generating functions and mean deviations of the log-gamma Weibull distribution. We demonstrate that the new regression model can be applied to censored data since it represents a parametric family of models which includes as sub-models several widely-known regression models and therefore can be used more effectively in the analysis of survival data. We obtain the maximum likelihood estimates of the model parameters by considering censored data and evaluate local influence on the estimates of the parameters by taking different perturbation schemes. Some global-influence measurements are also investigated. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models. 

2019 ◽  
Vol 11 (01n02) ◽  
pp. 1950003
Author(s):  
Fábio Prataviera ◽  
Gauss M. Cordeiro ◽  
Edwin M. M. Ortega ◽  
Adriano K. Suzuki

In several applications, the distribution of the data is frequently unimodal, asymmetric or bimodal. The regression models commonly used for applications to data with real support are the normal, skew normal, beta normal and gamma normal, among others. We define a new regression model based on the odd log-logistic geometric normal distribution for modeling asymmetric or bimodal data with support in [Formula: see text], which generalizes some known regression models including the widely known heteroscedastic linear regression. We adopt the maximum likelihood method for estimating the model parameters and define diagnostic measures to detect influential observations. For some parameter settings, sample sizes and different systematic structures, various simulations are performed to verify the adequacy of the estimators of the model parameters. The empirical distribution of the quantile residuals is investigated and compared with the standard normal distribution. We prove empirically the usefulness of the proposed models by means of three applications to real data.


Author(s):  
Hanan Alamoudi ◽  
Salwa‎ Mousa‎ ◽  
Lamya Baharith

This article introduces a new location-scale regression model based on a log-Fréchet distribution. Maximum likelihood and Jackknife methods are used to estimate the new model parameters for censored data. Martingale and deviance residuals are obtained to check model assumptions, data validity, and detect outliers. Moreover, global influence is used to detect influential observations. Monte Carlo simulation study is provided to compare the performance of the maximum likelihood and jackknife estimators for different sample sizes and censoring percentages. The empirical distribution of the martingale and deviance residuals of the proposed model is examined. A real lifetime heart transplant data is analyzed under the log-Fréchet regression model to illustrate the satisfactory results of the proposed model.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Shokrya Saleh Alshqaq ◽  

The least trimmed squares (LTS) estimation has been successfully used in the robust linear regression models. This article extends the LTS estimation to the Jammalamadaka and Sarma (JS) circular regression model. The robustness of the proposed estimator is studied and the used algorithm for computation is discussed. Simulation studied, and real data show that the proposed robust circular estimator effectively fits JS circular models in the presence of vertical outliers and leverage points.


2021 ◽  
Vol 16 (4) ◽  
pp. 2993-3007
Author(s):  
Nofiu Idowu Badmus ◽  
Mary Idowu Akinyemi ◽  
Josephine Nneamaka Onyeka-Ubaka

For the first time, a location-scale regression model based on the logarithm of an extended Raleigh Lomax distribution which has the ability to deal and model of any survival data than classical regression model is introduced. We obtain the estimate for the model parameters using the method of maximum likelihood by considering breast cancer data. In addition, normal probability plot of the residual is used to detect the outliers and evaluate model assumptions. We use a real data set to illustrate the performance of the new model, some of its submodels and classical models consider in the study. Also, we perform the statistics AIC, BIC and CAIC to select the most appropriate model among those regression models considered in the study.


2003 ◽  
Vol 5 (3) ◽  
pp. 363 ◽  
Author(s):  
Slamet Sugiri

The main objective of this study is to examine a hypothesis that the predictive content of normal income disaggregated into operating income and nonoperating income outperforms that of aggregated normal income in predicting future cash flow. To test the hypothesis, linear regression models are developed. The model parameters are estimated based on fifty-five manufacturing firms listed in the Jakarta Stock Exchange (JSX) up to the end of 1997.This study finds that empirical evidence supports the hypothesis. This evidence supports arguments that, in reporting income from continuing operations, multiple-step approach is preferred to single-step one.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 130
Author(s):  
Omar Rodríguez-Abreo ◽  
Juvenal Rodríguez-Reséndiz ◽  
L. A. Montoya-Santiyanes ◽  
José Manuel Álvarez-Alvarado

Machinery condition monitoring and failure analysis is an engineering problem to pay attention to among all those being studied. Excessive vibration in a rotating system can damage the system and cannot be ignored. One option to prevent vibrations in a system is through preparation for them with a model. The accuracy of the model depends mainly on the type of model and the fitting that is attained. The non-linear model parameters can be complex to fit. Therefore, artificial intelligence is an option for performing this tuning. Within evolutionary computation, there are many optimization and tuning algorithms, the best known being genetic algorithms, but they contain many specific parameters. That is why algorithms such as the gray wolf optimizer (GWO) are alternatives for this tuning. There is a small number of mechanical applications in which the GWO algorithm has been implemented. Therefore, the GWO algorithm was used to fit non-linear regression models for vibration amplitude measurements in the radial direction in relation to the rotational frequency in a gas microturbine without considering temperature effects. RMSE and R2 were used as evaluation criteria. The results showed good agreement concerning the statistical analysis. The 2nd and 4th-order models, and the Gaussian and sinusoidal models, improved the fit. All models evaluated predicted the data with a high coefficient of determination (85–93%); the RMSE was between 0.19 and 0.22 for the worst proposed model. The proposed methodology can be used to optimize the estimated models with statistical tools.


1993 ◽  
Vol 9 (4) ◽  
pp. 570-588 ◽  
Author(s):  
Keith Knight

This paper considers the asymptotic behavior of M-estimates in a dynamic linear regression model where the errors have infinite second moments but the exogenous regressors satisfy the standard assumptions. It is shown that under certain conditions, the estimates of the parameters corresponding to the exogenous regressors are asymptotically normal and converge to the true values at the standard n−½ rate.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Mohsen Maleki ◽  
Javier Contreras-Reyes ◽  
Mohammad Mahmoudi

In this paper, we examine the finite mixture (FM) model with a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family components. This family allows the development of a robust estimation of FM models. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and light/heavy tailed distributions. It represents an alternative family to the well-known scale mixtures of the skew normal (SMSN) family studied by Branco and Dey (2001). Also, the TP-SMN covers the SMN (normal, t, slash, and contaminated normal distributions) as the symmetric members and two-piece versions of them as asymmetric members. A key feature of this study is using a suitable hierarchical representation of the family to obtain maximum likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and real data, and then compared to other finite mixture of SMSN models.


Sign in / Sign up

Export Citation Format

Share Document