scholarly journals Sinh Inverted Exponential Distribution: Simulation & Application to Neck Cancer Disease

2020 ◽  
Vol 9 (5) ◽  
pp. 11
Author(s):  
Saeed E. Hemeda ◽  
Ali M. Abdallah

A goal of this research is providing new probability distribution called Sinh inverted exponential distribution. The new distribution was extensively depending on the hyperbolic sine family of distributions with exponential distribution as a baseline distribution. Valuable statistical properties of the proposed distribution including mathematical and asymptotic expressions for its probability density function and Reliability. Moments, quantiles, moment generating function, failure rate function, mean residual lifetime, order statistics and entropies are derived. Actually, the applicability and validation of this model is proved in simulation study and an application to neck cancer disease data.

Author(s):  
Suleman Nasiru ◽  
Abdul Ghaniyyu Abubakari ◽  
Irene Dekomwine Angbing

In this paper, we introduce a new three-parameter distribution defined on the unit interval. The density function of the distribution exhibits different kinds of shapes such as decreasing, increasing, left skewed, right skewed, and approximately symmetric. The failure rate function shows increasing, bathtub, and modified upside-down bathtub shapes. Six different frequentist estimation procedures were proposed for estimating the parameters of the distribution and their performance assessed via Monte Carlo simulations. Applications of the distribution were illustrated by analyzing two datasets and its fit compared to that of other distributions defined on the unit interval. Finally, we developed a regression model for a response variable that follows the new distribution.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1678
Author(s):  
Abdulrahman Abouammoh ◽  
Mohamed Kayid

A new method for generalizing the Lindley distribution, by increasing the number of mixed models is presented formally. This generalized model, which is called the generalized Lindley of integer order, encompasses the exponential and the usual Lindley distributions as special cases when the order of the model is fixed to be one and two, respectively. The moments, the variance, the moment generating function, and the failure rate function of the initiated model are extracted. Estimation of the underlying parameters by the moment and the maximum likelihood methods are acquired. The maximum likelihood estimation for the right censored data has also been discussed. In a simulation running for various orders and censoring rates, efficiency of the maximum likelihood estimator has been explored. The introduced model has ultimately been fitted to two real data sets to emphasize its application.


Author(s):  
Emmanuel W. Okereke ◽  
Johnson Ohakwe

AbstractIn this paper, we defined and studied a new distribution called the odd exponentiated half-logistic Burr III distribution. Properties such as the linear representation of the probability density function (PDF) of the distribution, quantile function, ordinary and incomplete moments, moment generating function and distribution of the order statistic were derived. The PDF and hazard rate function were found to be capable of having various shapes, making the new distribution highly flexible. In particular, the hazard rate function can be nonincreasing, unimodal and nondecreasing. It can also have the bathtub shape among other non- monotone shapes. The maximum likelihood procedure was used to estimate the parameters of the new model. We gave two numerical examples to illustrate the usefulness and the ability of the distribution to provide better fits to a number of data sets than several distributions in existence.Keywords: Burr III distribution; maximum likelihood procedure; moments; odd exponentiated half-logistic-G family; order statistics. AbstrakPada artikel ini akan didefinisikan dan dipelajari mengenai distribusi baru yang disebut distribusi Burr III setengah logistik tereksponen ganjil. Kami menurunkan beberapa sifat dari distribusi tersebut yaitu representasi linier dari fungsi kepadatan peluang (FKP), fungsi kuantil, momen biasa dan momen tidak lengkap, fungsi pembangkit momen dan distribusi statistik terurut. Fungsi FKP dan fungsi tingkat hazard diperoleh memiliki bermacam-macam bentuk, membuat distribusi baru ini sangat fleksibel. Secara khusus, fungsi tingkat hazard dapat berupa fungsi taknaik, bermodus tunggal, bisa juga tidak turun. Selain itu, fungsi ini juga dapat berbentuk seperti bak mandi di antara bentuk-bentuk tak monoton lainnya. Prosedur kemungkinan maksimum digunakan untuk mengestimasi parameter model yang baru. Kami memberikan dua contoh numerik untuk mengilustrasikan kegunaan dan kemampuan distribusi untuk menghasilkan kesesuaian yang lebih baik pada sejumlah kumpulan data dibandingkan beberapa distribusi yang ada.Kata kunci: distribusi Burr III; prosedur kemungkinan maksimum; momen; keluarga setengah logistik-G teresponen ganjil; statistic terurut.


Author(s):  
Wahid Shehata

A new four parameter lifetime model called the Weibullgeneralized Lomax is proposed and studied.  The new density function can be "right skewed", "symmetric" and "left skewed" and its corresponding failure rate function can be "monotonically decreasing", " monotonically increasing" and "constant". The skewness of the new distribution can negative and positive. The maximum likelihood method is employed and used for estimating the model parameters. Using the "biases" and "mean squared errors", we performed simulation experiments for assessing the finite sample behavior of the maximum likelihood estimators. The new model deserved to be chosen as the best model among many well-known Lomax extension such as exponentiated Lomax, gamma Lomax, Kumaraswamy Lomax, odd log-logistic Lomax, Macdonald Lomax, beta Lomax, reduced odd log-logistic Lomax, reduced Burr-Hatke Lomax, reduced WG-Lx, special generalized mixture Lomax and the standard Lomax distributions in modeling the "failure times" and the "service times" data sets.


2019 ◽  
Vol 34 (1) ◽  
pp. 35-51
Author(s):  
Indranil Ghosh ◽  
Sanku Dey ◽  
Devendra Kumar

Abstract In this paper a new probability density function with bounded domain is presented. This distribution arises from the Marshall–Olkin extended exponential distribution proposed by Marshall and Olkin (1997). It depends on two parameters and can be considered as an alternative to the classical beta and Kumaraswamy distributions. It presents the advantage of not including any additional parameter(s) or special function in its formulation. The new transformed model, called the unit-Marshall–Olkin extended exponential (UMOEE) distribution which exhibits decreasing, increasing and then bathtub shaped density while the hazard rate has increasing and bathtub shaped. Various properties of the distribution (including quantiles, ordinary moments, incomplete moments, conditional moments, moment generating function, conditional moment generating function, hazard rate function, mean residual lifetime, Rényi and δ-entropies, stress-strength reliability, order statistics and distributions of sums, difference, products and ratios) are derived. The method of maximum likelihood is used to estimate the model parameters. A simulation study is carried out to examine the bias, mean squared error and 95  asymptotic confidence intervals of the maximum likelihood estimators of the parameters. Finally, the potentiality of the model is studied using two real data sets. Further, a bivariate extension based on copula concept of the proposed model are developed and some properties of the distribution are derived. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.


2021 ◽  
Vol 9 (4) ◽  
pp. 974-983
Author(s):  
M. S Eliwa ◽  
Medhat EL-Damcese ◽  
A. H. El-Bassiouny ◽  
Abhishek Tyag ◽  
M. El-Morshedy

Linear and circular consecutive models play a vital role to study the mechanical systems emerging in various fields including survival analysis, reliability theory, biological disciplines, and other lifetime sciences. As a result, analysis of reliability properties of consecutive k − out − of − n : F systems has gained a lot of attention in recent years from a theoretical and practical point of view. In the present article, we have studied some important stochastic and aging properties of residual lifetime of consecutive k − out − of − n : F systems under the condition n − k + 1, k ≤ n and all components of the system are working at time t. The mean residual lifetime  (MRL) and its hazard rate function are proposed for the linear consecutive k − out − of − n : F (lin/con/k/n:F) and circular consecutive k − out − of − n : F (cir/con/k/n:F) systems. Furthermore, several mathematical properties of the proposed MRL are examined. Finally, the Weibull distribution with two parameters is used as an example to explain the theoretical results.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-34
Author(s):  
Morad Alizadeh ◽  
Muhammad Nauman Khan ◽  
Mahdi Rasekhi ◽  
G.G Hamedani

We introduce a new distribution, so called A new generalized modified Weibull (NGMW) distribution. Various structural properties of the distribution are obtained in terms of Meijer's $G$--function, such as moments, moment generating function, conditional moments, mean deviations, order statistics and maximum likelihood estimators. The distribution exhibits a wide range of shapes with varying skewness and assumes all possible forms of hazard rate function. The NGMW distribution along with other distributions are fitted to two sets of data, arising in hydrology and in reliability. It is shown that the proposed distribution has a superior performance among the compared distributions as evidenced via goodness--of--fit tests


2019 ◽  
Vol 56 (1) ◽  
pp. 55-80
Author(s):  
Morad Alizadeh ◽  
Saeid Tahmasebi ◽  
Mohammad Reza Kazemi ◽  
Hamideh Siyamar Arabi Nejad ◽  
G. Hossein G. Hamedani

Abstract In this paper, we introduce a new three-parameter generalized version of the Gompertz model called the odd log-logistic Gompertz (OLLGo) distribution. It includes some well-known lifetime distributions such as Gompertz (Go) and odd log-logistic exponential (OLLE) as special sub-models. This new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a decreasing, increasing and bathtub-shaped failure rate function depending on its parameters. Some mathematical properties of the new distribution, such as closed-form expressions for the density, cumulative distribution, hazard rate function, the kth order moment, moment generating function and the quantile measure are provided. We discuss maximum likelihood estimation of the OLLGo parameters as well as three other estimation methods from one observed sample. The flexibility and usefulness of the new distribution is illustrated by means of application to a real data set.


Sign in / Sign up

Export Citation Format

Share Document