scholarly journals Effect of Butyrylated Arrowroot Starch to the Digesta Profile and Molar Ratio SCFA

2013 ◽  
Vol 2 (2) ◽  
pp. 144
Author(s):  
Damat Damat

The research was conducted to determine the effects of Butyrylated Arrowroot Starch (BAS) to the digesta profile and Short Chain Fatty Acids (SCFA) molar ratio. The research was conducted by using simple complete randomized design (CRD). The treatment tested was feed type, which consists of 5 levels, namely natural arrowroot starch, BAS with Degree of Substitution (DS) 0.053; 0.120; 0.187 and AIN93 natural feed. The study was conducted by using 30 Sprague Dawley rats, which were divided into 5 groups, each group consisting of 6 tails. Feeding treatments were given from dayseven until day 33. On day-34 analysis was conductedof the digesta profile and the SCFA molar ratio. Based on the analysis results, it is known that BAS feeding increased digesta weight, decreased digesta pH and increased digesta water content when compared with the AIN93 standard feed. Largest amount of digesta, lowest digesta pH, and highest water content of digesta, respectively 7.19 g, 6.53 and 91.23%, wasobtained from rats fed BAS with DS 0.187. The molar ratio of butyric acid in digesta also increased along with the increasing BAS DS.<strong><em></em></strong><em></em>

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2606 ◽  
Author(s):  
Mercè Hereu ◽  
Sara Ramos-Romero ◽  
Roser Marín-Valls ◽  
Susana Amézqueta ◽  
Bernat Miralles-Pérez ◽  
...  

Some functional food components may help maintain homeostasis by promoting balanced gut microbiota. Here, we explore the possible complementary effects of d-fagomine and ω-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA 1:1) on putatively beneficial gut bacterial strains. Male Sprague–Dawley rats were supplemented with d-fagomine, ω-3 PUFAs, or both, for 23 weeks. Bacterial subgroups were evaluated in fecal DNA by quantitative real-time polymerase chain reaction (qRT-PCR) and short-chain fatty acids were determined by gas chromatography. We found that the populations of the genus Prevotella remained stable over time in animals supplemented with d-fagomine, independently of ω-3 PUFA supplementation. Animals in these groups gained less weight than controls and rats given only ω-3 PUFAs. d-Fagomine supplementation together with ω-3 PUFAs maintained the relative populations of Bacteroides. ω-3 PUFAs alone or combined with d-fagomine reduced the amount of acetic acid and total short-chain fatty acids in feces. The plasma levels of pro-inflammatory arachidonic acid derived metabolites, triglycerides and cholesterol were lower in both groups supplemented with ω-3 PUFAs. The d-fagomine and ω-3 PUFAs combination provided the functional benefits of each supplement. Notably, it helped stabilize populations of Prevotella in the rat intestinal tract while reducing weight gain and providing the anti-inflammatory and cardiovascular benefits of ω-3 PUFAs.


1994 ◽  
Vol 7 (6) ◽  
Author(s):  
U. Siigur ◽  
K. E. Norin ◽  
G. Allgood ◽  
T. Schlagheck ◽  
Tore Midtvedt

1996 ◽  
Vol 271 (6) ◽  
pp. C1853-C1860 ◽  
Author(s):  
P. C. Dagher ◽  
R. W. Egnor ◽  
A. Taglietta-Kohlbrecher ◽  
A. N. Charney

Butyrate stimulates salt absorption in mammalian colon. We examined whether butyrate also affects Cl- secretion. Mucosal segments of distal colon of male Sprague-Dawley rats and T84 cells were studied in Ussing chambers. In control colon, 1 mM dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) increased short-circuit current (Isc) and serosal-to-mucosal Cl- flux (JsmCl) by 3.2 +/- 0.8 and 2.9 +/- 0.8 mueq.cm-2.h-1, respectively. Mucosal or serosal 25 mM butyrate prevented DBcAMP-induced increases in Isc and JsmCl. Four and eight millimolar butyrate caused half-maximal inhibition of the increases in JsmCl and Isc, respectively. Butyrate also inhibited basal JsmCl (by 2.0 +/- 0.4 mueq.cm-2.h-1) but not carbachol-mediated Cl- secretion. The relative inhibitory potency at 25 mM of other short-chain fatty acids (SCFA) paralleled their degree of cellular metabolism: butyrate > acetate = propionate > isobutyrate. At 25 mM, all SCFA reduced mucosal intracellular pH (pHi) transiently by 0.1 pH unit. In intact T84 cells, 50 mM butyrate inhibited the DBcAMP-induced rise in Isc by 55%. In T84 cells with nystatin-permeabilized basolateral membranes, butyrate inhibited the increase in Isc by 82%. We conclude that butyrate inhibits basal and cAMP-mediated Cl- secretion by a mechanism independent of pHi, possibly located at the apical membrane.


2002 ◽  
Vol 87 (S2) ◽  
pp. S163-S168 ◽  
Author(s):  
M. Nyman

The bulking index (i.e. the increase in faecal fresh weight in gram per gram indigestible carbohydrate ingested) with oligofructose and inulin is similar to that produced with other easily fermented fibres such as pectins and gums. Most studies in man have been performed at a level of 15 g/d and more investigations on lower intakes are needed to appoint the least intake for an effect. Concerning short-chain fatty acids (SCFA) most studies have been using oligofructose and points at an increased butyric acid formation in the caecum of rats. In one study on rats with inulin high caecal proportions of propionic acid were obtained. As inulin has a higher molecular weight than oligofructose it might be speculated if this could be a reason to the different SCFA-profile formed. No effects on faecal concentrations of SCFA in humans have been revealed with inulin and oligofructose, which neither is expected as most of the SCFA formed during the fermentation already has been absorbed or utilized by the colonic mucosa.


2017 ◽  
Vol 8 (5) ◽  
pp. 1966-1978 ◽  
Author(s):  
Linlin Wang ◽  
Lujun Hu ◽  
Shuang Yan ◽  
Tian Jiang ◽  
Shuguang Fang ◽  
...  

Oligosaccharides administered as a dietary supplement increase the water content of feces, reduce intestinal transit time, modulate the composition of the gut microbiota and increase the concentration of short-chain fatty acids in the feces of mice with constipation.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Benjamin Seethaler ◽  
Jacqueline Beutel ◽  
Marie Kogel ◽  
Maryam Basrai ◽  
Jens Walter ◽  
...  

AbstractBackground: A number of small intervention studies suggested that a Mediterranean diet (MedD) and physical activity can lower the risk for breast cancer. LIBRE is the first large multicenter RCT to test the effect of these lifestyle factors on the incidence of breast cancer in women at risk because of BRCA mutations(1). LIBRE also offers to unravel underlying mechanisms such as the role of short-chain fatty acids (SCFA) for beneficial effects of such lifestyle interventions.Methods: We examined the effect of the lifestyle intervention on the production of SCFA measured in feces by gas chromatography. From the ongoing LIBRE trial we included all complete datasets (171 women; mean age 44 ± 11 years). Both women with and without previous breast cancer diagnosis were recruited (diseased; non-diseased). The participants were randomized into an intervention group (IG) trained for MedD and physical activity, and a usual care control group (CG). Adherence to the MedD was assessed at baseline and after 3 months (V1) using the validated Mediterranean Diet Adherence Screener (MEDAS) and the EPIC food frequency questionnaire (FFQ).Results: At baseline there was no difference in SCFA levels between the groups. In the IG the MEDAS score increased substantially by 2.5 points (p < 0.001), in the CG only mildly by 0.4 points (p < 0.05). Correspondingly, the intake of fibers increased solely in the IG. In the course of the study the amount of caproic acid decreased in the control group (p < 0.001). At V1 non-diseased women showed higher amounts of acetic acid (p = 0.042), n-butyric acid (p = 0.023), n-valeric acid (p = 0.018) and iso-valeric acid (p = 0.031). There were several correlations between the intake of different fibers and fecal SCFA. For example, the sum of poly- and oligosaccharides correlated with acetic acid (p = 0.001; r = 0.316), propionic acid (p = 0.034; r = 0,251), n-butyric acid (p = 0.010; r = 0.316) and iso-valeric acid (p = 0.012; r = 0.306). There was no correlation between the MEDAS and SCFA.Discussion: A lifestyle change towards a MedD and increased physical activity did not change the levels of SCFA in feces, although an increase of fiber intake was documented in the IG. To further analyze SCFA metabolism in this target population, gut microbiota composition and function (metabolites) are currently analyzed.


Sign in / Sign up

Export Citation Format

Share Document