scholarly journals Photochromic Smart Windows Employing WO3-Based Composite Films

2017 ◽  
Vol 6 (4) ◽  
pp. 62 ◽  
Author(s):  
Hidetoshi Miyazaki ◽  
Takumi Ishigaki ◽  
Toshitaka Ota

WO3-based composite films were fabricated from peroxo-iso-poly tungstic acid and a transparent urethane resin, and the photochromic properties of the films were evaluated under sunlight from three seasons: spring, summer, and winter. All composite films exhibited photochromism under solar irradiation, and the coloring degree of the films varied with the sunlight intensity for each season. We estimate the energy efficiency of the colored composite films for various seasons.

2018 ◽  
Author(s):  
Dmitrii Moldarev ◽  
Elbruz M. Baba ◽  
Marcos V. Moro ◽  
Chang C. You ◽  
Smagul Zh. Karazhanov ◽  
...  

It has been recently demonstrated that yttrium oxyhydride(YHO) films can exhibit reversible photochromic properties when exposed to illumination at ambient conditions. This switchable optical propertyenables their utilization in many technological applications, such as smart windows, sensors, goggles, medical devices, etc. However, how the composition of the films affects their optical properties is not fully clear and therefore demands a straightforward investigation. In this work, the composition of YHO films manufactured by reactive magnetron sputtering under different conditions is deduced in a ternary diagram from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). The results suggest that stable compounds are formed with a specificchemical formula – YH<sub>2-δ</sub>O<sub>δ</sub>. In addition, optical and electrical properties of the films are investigated, and a correlation with their compositions is established. The corresponding photochromic response is found in a specific oxygen concentration range (0.45 < δ < 1.5) with maximum and minimum of magnitude on the lower and higher border, respectively.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S150-S151
Author(s):  
Paul J Chestovich ◽  
Richard Z Saroukhanoff ◽  
Syed F Saquib ◽  
Joseph T Carroll ◽  
Carmen E Flores ◽  
...  

Abstract Introduction In the desert climates of the United States, plentiful sunlight and high summer temperatures cause significant burn injuries from hot pavement and other surfaces. Although it is well known that surfaces reach temperatures sufficient to cause full-thickness burns, the peak temperature, time of day, and highest risk materials is not well described. This work measured continuous temperature measurements of six materials in a desert climate over a five-month period. Methods Six different solid materials common in an urban environment were utilized for measurement. Asphalt, brick, concrete, sand, porous rock, and galvanized metal were equipped with thermocouples attached to a data acquisition module. All solid materials except metal were placed in a 2’x2’x3.5” form, and identical samples were placed in both shade and direct sunlight. Ambient temperature was recorded, and sunlight intensity was measured using a pyranometer. Measurement time interval was set at three minutes. A computational fluid dynamics (CFD) model was created using Star CCM+ to validate the data. Contour plots of temperature, solar irradiance, and time of day were created using MiniTab for all surfaces tested. Results 75,000 temperature measurements were obtained from March through August 2020. Maximum recorded temperatures for sunlight-exposed samples of porous rock was 170 F, asphalt 166 F, brick 152 F, concrete 144 F, metal 144 F, and sand 143 F. Peak temperatures were recorded on August 6, 2020 at 2:10 pm, when ambient temperature was 120 F and sunlight intensity 940 W/m2 (Table). Temperatures ranged from 36 F - 56 F higher than identical materials in the shade at the same time. The highest daily temperatures were achieved between 2:00 pm to 4:00 pm due to maximum solar irradiance. Contour plots of surface temperature as function of solar irradiation and time of day were created for all surfaces tested. Nearly identical results obtained from the CFD models to the experimentally collected data, which validated the experimental data. Conclusions Surfaces exposed to direct, continuous sunlight in a desert climate achieve temperatures from 143 F to 170 F in the early afternoon and are high enough to cause significant injury with sufficient exposure. Porous rock reached the highest temperature, followed closely by asphalt. This information is useful to inform the public of the dangers of exposed surfaces in a desert climate.


2017 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Hidetoshi Miyazaki ◽  
Narumi Eimori ◽  
Takahiro Matsuura ◽  
Toshitaka Ota

Nickel oxide (NiO)-based composite films with various Cobalt/Nickel (Co/Ni) ratios were fabricated, and the photochromic properties of the resulting films were evaluated. The NiO particle sizes in the composite films with Co/Ni ratios of 0~0.02 were 40~70 nm. Increase in the Co addition ratio to the composite films caused a decrease in the initial transmittance of the films, and the films with Co/Ni ratio of 0.005 and 0.01 showed a larger transmittance modulation. Co addition caused an increase in the bleaching and coloring rates, which were the largest in the film with Co/Ni ratio of 0.005.


2009 ◽  
Vol 52 (2) ◽  
pp. 169-173 ◽  
Author(s):  
He Qi ◽  
Yan Liu ◽  
Wei Feng ◽  
YiMin Zhu

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1449 ◽  
Author(s):  
Alessandro Cannavale ◽  
Ubaldo Ayr ◽  
Francesco Fiorito ◽  
Francesco Martellotta

Electrochromic systems for smart windows make it possible to enhance energy efficiency in the construction sector, in both residential and tertiary buildings. The dynamic modulation of the spectral properties of a glazing, within the visible and infrared ranges of wavelengths, allows one to adapt the thermal and optical behavior of a glazing to the everchanging conditions of the environment in which the building is located. This allows appropriate control of the penetration of solar radiation within the building. The consequent advantages are manifold and are still being explored in the scientific literature. On the one hand, the reduction in energy consumption for summer air conditioning (and artificial lighting, too) becomes significant, especially in "cooling dominated" climates, reaching high percentages of saving, compared to common transparent windows; on the other hand, the continuous adaptation of the optical properties of the glass to the changing external conditions makes it possible to set suitable management strategies for the smart window, in order to offer optimal conditions to take advantage of daylight within the confined space. This review aims at a critical review of the relevant literature concerning the benefits obtainable in terms of energy consumption and visual comfort, starting from a survey of the main architectures of the devices available today.


2013 ◽  
Vol 537 ◽  
pp. 201-204 ◽  
Author(s):  
Juan Zuo

Large-scale uniform Ag@TiO2 films was prepared by RF magnetron sputtering in pure Ar plasma using polycrystalline TiO2 semiconductor sintered target. The effect of annealing on the photochromic properties was studied to obtain a better understanding of the interaction of the structure. Ultraviolet-visible absorption and scanning electron microscopy were performed to investigate the possibility of tailoring the structure with consequent modification of the optical properties. Ag nanoparticles were formed between TiO2 films after annealing the samples with Ag film structure. The annealed Ag@TiO2 films present a photochromic property in comparison with the as-prepared samples. Such nanocomposite films can be used as smart windows, high density multiwavelength optical memory and rewritable electronic paper.


2020 ◽  
Vol 1008 ◽  
pp. 72-83
Author(s):  
Asmaa Mohammed Nageib ◽  
Abbas Mohamed El-Zafarany ◽  
Fatma Osman Mohamed ◽  
Mohamed Helmy El-Hefnawy

The office buildings in Egypt, especially in Upper Egypt, reflect serious problems in achieving for energy efficiency as a result of increasing the use of mechanical refrigeration devices in office rooms, due to solar radiation and rising summer temperatures in recent years. Smart windows can play an important role in reducing significantly the energy consumption and maintaining energy inside buildings, also helps to control incoming solar radiation in order to minimize solar gain, especially in summer as well as ensuring the best natural lighting conditions without glare inside a room. This paper aims to evaluate the most efficient daylight and thermal performance of various types of the smart glazing and its impact on the energy consumption in the climatic conditions of one of the office buildings (Diwan governorate) in Sohag governorate as one of Upper Egypt governorates, with determining the best smart glass types for efficient use of energy. The paper follows the theoretical, applied, by studying types of smart glazing and their relation to achieving the energy efficiency. Then using (Energy Plus) simulation tool, which has been used in utilizing its modeling orientation (Design Builder) to study using types of smart glazing on the model of an office room in Building of Diwan governorate of Sohag in the four different orientations (North, East, South and West), when window-to-floor ratios (WFRs) (8%, 16%, 24% and 32%). The paper ends with a presentation of the most important results, recommendations and determination the best types of smart glass that provides energy, daylight without glare and providing greater comfort to users.


2012 ◽  
Vol 85 (9) ◽  
pp. 1053-1056 ◽  
Author(s):  
Hidetoshi Miyazaki ◽  
Masaya Inada ◽  
Hisao Suzuki ◽  
Toshitaka Ota

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hidetoshi Miyazaki ◽  
Hirochi Shimoguchi ◽  
Hiroki Nakayama ◽  
Hisao Suzuki ◽  
Toshitaka Ota

AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2mixing ratio.


Sign in / Sign up

Export Citation Format

Share Document