scholarly journals Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1449 ◽  
Author(s):  
Alessandro Cannavale ◽  
Ubaldo Ayr ◽  
Francesco Fiorito ◽  
Francesco Martellotta

Electrochromic systems for smart windows make it possible to enhance energy efficiency in the construction sector, in both residential and tertiary buildings. The dynamic modulation of the spectral properties of a glazing, within the visible and infrared ranges of wavelengths, allows one to adapt the thermal and optical behavior of a glazing to the everchanging conditions of the environment in which the building is located. This allows appropriate control of the penetration of solar radiation within the building. The consequent advantages are manifold and are still being explored in the scientific literature. On the one hand, the reduction in energy consumption for summer air conditioning (and artificial lighting, too) becomes significant, especially in "cooling dominated" climates, reaching high percentages of saving, compared to common transparent windows; on the other hand, the continuous adaptation of the optical properties of the glass to the changing external conditions makes it possible to set suitable management strategies for the smart window, in order to offer optimal conditions to take advantage of daylight within the confined space. This review aims at a critical review of the relevant literature concerning the benefits obtainable in terms of energy consumption and visual comfort, starting from a survey of the main architectures of the devices available today.

2012 ◽  
Vol 253-255 ◽  
pp. 716-719
Author(s):  
Yang Wang ◽  
Yan Chen

Under the circumstances of the increasing energy consumption of buildings, the development and application of building energy efficiency technology have attracted the attention of many people. As one of the important building energy efficiency technologies, roof greening has played a positive role in building a low-carbon and energy-saving society. This paper analyzes the technological characteristics and the formation methods of the roof greening system. It also expounds on the role of roof greening in building energy conservation.


2020 ◽  
Vol 1008 ◽  
pp. 72-83
Author(s):  
Asmaa Mohammed Nageib ◽  
Abbas Mohamed El-Zafarany ◽  
Fatma Osman Mohamed ◽  
Mohamed Helmy El-Hefnawy

The office buildings in Egypt, especially in Upper Egypt, reflect serious problems in achieving for energy efficiency as a result of increasing the use of mechanical refrigeration devices in office rooms, due to solar radiation and rising summer temperatures in recent years. Smart windows can play an important role in reducing significantly the energy consumption and maintaining energy inside buildings, also helps to control incoming solar radiation in order to minimize solar gain, especially in summer as well as ensuring the best natural lighting conditions without glare inside a room. This paper aims to evaluate the most efficient daylight and thermal performance of various types of the smart glazing and its impact on the energy consumption in the climatic conditions of one of the office buildings (Diwan governorate) in Sohag governorate as one of Upper Egypt governorates, with determining the best smart glass types for efficient use of energy. The paper follows the theoretical, applied, by studying types of smart glazing and their relation to achieving the energy efficiency. Then using (Energy Plus) simulation tool, which has been used in utilizing its modeling orientation (Design Builder) to study using types of smart glazing on the model of an office room in Building of Diwan governorate of Sohag in the four different orientations (North, East, South and West), when window-to-floor ratios (WFRs) (8%, 16%, 24% and 32%). The paper ends with a presentation of the most important results, recommendations and determination the best types of smart glass that provides energy, daylight without glare and providing greater comfort to users.


2013 ◽  
Vol 291-294 ◽  
pp. 945-948 ◽  
Author(s):  
Feng Qin Yu ◽  
Bei Tian ◽  
Xin Zhang ◽  
Qiang Wang ◽  
Dan Shi Yu ◽  
...  

The building energy consumption is one of three in China's energy consumption, the detection and monitoring for energy consumption of building is the basis for the work of building energy efficiency. This article describes a perception, monitoring and management system of building energy consumption based on Internet of Things technology architecture, in the system, various energy instrumentation is installed inside the building and measurement all kinds of energy consumption data in the perception layer, collection daterminal data connected to the RS485 bus access gateway for data transmission via Ethernet or mobile communication network in the network layer and transport layer, deal with the statistical analysis of the energy consumption data in the application layer. The system has been successfully applied to more than 50 large-scale public building to implement energy consumption monitoring and management, and the support of the underlying data for building energy efficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Bo-Eun Choi ◽  
Ji-Hyun Shin ◽  
Jin-Hyun Lee ◽  
Sun-Sook Kim ◽  
Young-Hum Cho

ECO2 (building energy efficiency rating program) and passive energy conservation measures (ECMs) were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR) and horizontal shading angle. The performance elements are the thermal transmittance (U-value) of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC) of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.


2012 ◽  
Vol 516-517 ◽  
pp. 1184-1187
Author(s):  
Heng Sun ◽  
Dan Shu ◽  
Hong Mei Zhu

One-stage pre-cooled mixture refrigerant cycle can be applied in small-scale LNG plant and be special suitable for skit mounted LNG plant. It has different character with the C3MR cycle used in large-scale LNG plant. The optimization of the mixture refrigerant is carried out using HYSYS software. The effect of the main process parameters on the performance of the cycle is calculated and discussed. The result shows that appropriate ranges of the process parameters exist. Higher and lower values of the parameters will increase the energy consumption significantly. The results also indicate that the optimization of the one-stage pre-cooled mixture refrigerant cycle can obtain rather high energy efficiency that is competitive with that of the SMR which is widely employed in small-scale LNG plant.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5643
Author(s):  
Yujin Ko ◽  
Hyogeun Oh ◽  
Hiki Hong ◽  
Joonki Min

Between 60% and 70% of the total energy load of a house or office occurs through the exteriors of the building, and in the case of offices, heat loss from windows and doors can approach 40%. A need for glass that can artificially control the transmittance of visible light has therefore emerged. Smart windows with suspended particle device (SPD) film can reduce energy consumption by responding to environmental conditions. To measure the effect of SPD windows on the energy requirements for cooling and heating in Korea, we installed a testbed with SPD windows. With TRNSYS18, the comparison between measurements and simulation has been made in order to validate the simulation model with respect to the modeling of an SPD window. Furthermore, the energy requirements of conventional and SPD-applied windows were compared and analyzed for a standard building that represented an actual office building. When weather for the city of Anseong and a two-speed heat pump were used to verify the simulation, the simulated electricity consumption error compared with the testbed was −1.0% for cooling and −0.9% for heating. The annual electricity consumption error was −0.9%. When TMY2 Seoul weather data were applied to the reference building, the decrease in electricity consumption for cooling in the SPD model compared with the non-SPD model was 29.1% and the increase for heating was 15.8%. Annual electricity consumption decreased by 4.1%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Norhayati Mahyuddin ◽  
Mozhgan Samzadeh ◽  
Suzaini M. Zaid ◽  
Norafida Ab Ghafar

PurposeThis paper aims to raise awareness on how a simple action by the occupant can significantly influence building energy efficiency, cost and CO2 emissions to the environment. Classrooms in schools are the primary energy consumers (45.4%) due to the use of artificial lighting, despite Malaysia's tropical climate being ideal for daylight exploitation. This paper focuses on assessing the workplane daylight distribution quality and quantity in baseline and existing conditions of a typical pre-school classroom in Kuala Lumpur as a model-based exploration strategy towards nearly Zero Energy Buildings.Design/methodology/approachThe adopted method is based on the calculation of average daylight factor (DF), daylight illuminance level (IL) and uniformity ratio (UR) parameters affected by the internal fixed drapes through computational and in situ measurements according to the requirements of the law and respective standards comprising the MS1525:2019, GBI and BREEAM.FindingsThe results show how user behaviour can turn a well-daylit area (Net Lettable Area>90%) into a poor-daylit area (NLA<5%) by sacrificing natural daylight. All the parameters' values were significantly decreased from 10% (UR) up to 88% (ADF). Full dependency on artificial lighting has imposed a total of RM18858.90 and CO2 emissions of 25,362 kg for all pre-schools' classrooms in the country per day.Social implicationsThe paper develops the occupants' awareness on their contribution to climate change and global warming through the information and transparency provided.Originality/valueThe evidence indicates that a simple action by the occupant can significantly influence visual comfort, EE, cost and CO2 emissions to the environment.


Sign in / Sign up

Export Citation Format

Share Document