598 Temperature profiles of sunlight-exposed surfaces in a desert climate: Determining the risks for pavement burns.

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S150-S151
Author(s):  
Paul J Chestovich ◽  
Richard Z Saroukhanoff ◽  
Syed F Saquib ◽  
Joseph T Carroll ◽  
Carmen E Flores ◽  
...  

Abstract Introduction In the desert climates of the United States, plentiful sunlight and high summer temperatures cause significant burn injuries from hot pavement and other surfaces. Although it is well known that surfaces reach temperatures sufficient to cause full-thickness burns, the peak temperature, time of day, and highest risk materials is not well described. This work measured continuous temperature measurements of six materials in a desert climate over a five-month period. Methods Six different solid materials common in an urban environment were utilized for measurement. Asphalt, brick, concrete, sand, porous rock, and galvanized metal were equipped with thermocouples attached to a data acquisition module. All solid materials except metal were placed in a 2’x2’x3.5” form, and identical samples were placed in both shade and direct sunlight. Ambient temperature was recorded, and sunlight intensity was measured using a pyranometer. Measurement time interval was set at three minutes. A computational fluid dynamics (CFD) model was created using Star CCM+ to validate the data. Contour plots of temperature, solar irradiance, and time of day were created using MiniTab for all surfaces tested. Results 75,000 temperature measurements were obtained from March through August 2020. Maximum recorded temperatures for sunlight-exposed samples of porous rock was 170 F, asphalt 166 F, brick 152 F, concrete 144 F, metal 144 F, and sand 143 F. Peak temperatures were recorded on August 6, 2020 at 2:10 pm, when ambient temperature was 120 F and sunlight intensity 940 W/m2 (Table). Temperatures ranged from 36 F - 56 F higher than identical materials in the shade at the same time. The highest daily temperatures were achieved between 2:00 pm to 4:00 pm due to maximum solar irradiance. Contour plots of surface temperature as function of solar irradiation and time of day were created for all surfaces tested. Nearly identical results obtained from the CFD models to the experimentally collected data, which validated the experimental data. Conclusions Surfaces exposed to direct, continuous sunlight in a desert climate achieve temperatures from 143 F to 170 F in the early afternoon and are high enough to cause significant injury with sufficient exposure. Porous rock reached the highest temperature, followed closely by asphalt. This information is useful to inform the public of the dangers of exposed surfaces in a desert climate.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wenzhu Huang ◽  
Jie Ji ◽  
Mawufemo Modjinou ◽  
Jing Qin

Research on the direct-expansion solar-assisted heat pump (DX-SAHP) system with bare plate evaporators for space heating is meaningful but insufficient. In this paper, experiments on a DX-SAHP system applying bare plate evaporators for space heating are conducted in the enthalpy difference lab with a solar simulator, with the ambient conditions stable. The independent effects of ambient temperature, solar irradiation, and relative humidity on the system performance are investigated. When ambient temperature changes as 5°C, 10°C, and 15°C, COP increases as 2.12, 2.18, and 2.26. When solar irradiance changes as 0 W m−2, 100 W m−2, 200 W m−2, 300 W m−2, and 500 W m−2, COP of the system changes as 2.07, 2.09, 2.14, 2.26, and 2.36. With ambient temperature of 5°C and solar irradiance of 0 W m−2, when relative humidity is 50%, no frost formed. Whereas with relative humidity of 70% and 90%, frost formed but not seriously frosted after 120 min of operating. Frost did not deteriorate but improved the heating performance of the DX-SAHP system. The change of relative humidity from 70% to 90% improves the evaporating heat exchange rate by 35.0% and increases COP by 16.3%, from 1.78 to 2.07.


2019 ◽  
Vol 25 (10) ◽  
pp. 1-19
Author(s):  
Mena Safaa Mohammed ◽  
Emad Talib Hashim

Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for different weather data (solar irradiance and ambient temperature) that is gathered from October 2017 to April 2018 in the city of Baghdad. The collected data is recorded for the entire months during the time which is limited between 8:00 AM and 1:00 PM. This work demonstrates that the change in a cell temperature is directly proportional with the PV module current, while it is inversely proportional with the PV module voltage. Additionally, the output power of a PV module increases with decreasing the solar module temperature. Furthermore, the Simulink block diagram is used to evaluate the influence of weather factors on the PV module temperature by connecting to the MATLAB code. The best value from the results of this work was in March when the solar irradiance was equal to 1000 W/m2 and the results were: Isc,exp=3.015, Isc,mod=3.25 , RE=7.79 and Voc,exp=19.67 ,Voc,mod=19.9 ,RE=1.1


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Qusay Hassan ◽  
Saadoon Abdul Hafedh ◽  
Ali Hasan ◽  
Marek Jaszczur

Abstract The study evaluates the visibility of solar photovoltaic power plant construction for electricity generation based on a 20 MW capacity. The assessment was performed for four main cities in Iraq by using hourly experimental weather data (solar irradiance, wind speed, and ambient temperature). The experimental data was measured for the period from 1st January to 31st December of the year 2019, where the simulation process was performed at a 1 h time step resolution at the same resolution as the experimental data. There are two positionings considered for solar photovoltaic modules: (i) annual optimum tilt angle and (ii) two-axis tracking system. The effect of the ambient temperature and wind on the overall system energy generated was taken into consideration. The study is targeted at evaluating the potential solar energy in Iraq and the viability of electricity generation using a 20 MW solar photovoltaic power plant. The results showed that the overall performance of the suggested power plant capacity is highly dependent on the solar irradiance intensity and the ambient temperature with wind speed. The current 20 MW solar photovoltaic power plant capacity shows the highest energy that can be generated in the mid-western region and the lowest in the northeast regions. The greatest influence of the ambient temperature on the energy genrated by power plants is observed in the southern regions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Li

The objective of this paper is to establish the performance of 8 kWp grid-connected photovoltaic (PV) power systems based on different PV module technologies in Nanjing, China. Nanjing has a hot summer and a cold winter which are considered based on monthly average solar irradiation and ambient temperature specifically for the deployment of grid-connected PV systems. The study focuses on performance assessment of grid-connected PV systems using typical PV modules made of monocrystalline silicon (m-Si), polycrystalline silicon (p-Si), edge-defined film-fed growth silicon (EFG-Si), cadmium telluride (CdTe) thin film, copper indium selenide (CIS) thin film, heterojunction with intrinsic thin layer (HIT), and hydrogenated amorphous silicon single-junction (a-Si:H single-PV) installed on location. The yearly average energy output, PV module and system efficiency, array yield, final yield, reference yield, performance ratio, monthly average array capture losses, and system losses of seven PV module technologies are all analyzed. The results show that grid-connected PV power system performance depends on geographical location, PV module types, and climate conditions such as solar radiation and ambient temperature. In addition, based on energy output and efficiency, the HIT PV power technology can be considered as the best option and CdTe and p-Si as the least suitable options for this area. The monthly average performance ratio of the CdTe technology was higher than those of other technologies over the monitoring period in Nanjing.


Author(s):  
Raj Kumar Yadav ◽  
Nivedita Sethy

The accurate prediction of solar irradiation has been a leading problem for better energy scheduling approach. Hence in this paper, an Artificial neural network based solar irradiance is proposed for five days duration the data is obtained from National Renewable Energy Laboratory, USA and the simulation were performed using MATLAB 2013. It was found that the neural model was able to predict the solar irradiance with a mean square error of 0.0355.


1962 ◽  
Vol 15 (2) ◽  
pp. 386 ◽  
Author(s):  
PR Morrison

Body temperature measurements on the short-nosed bandicoot (Thylacis obeaulus) have shown a nocturnal cycle with a range of 1� 2�C and a short active phase at 2200-0400 hr. The bilby or rabbit bandicoot (Macrotis lagoti8) had a sharply defined temperature cycle, with a range of almost 3�C after several months of captivity, during which the day-time resting temperature was progressively lowered from 36� 4 to 34� 2�C. Forced activity raised the diurnal temperature substantially but not to the nocturnal level. Forced activity did not raise the nocturnal level which was similar in the two species (37' O�C). Both species could regulate effectively at an ambient temperature of 5�C, but only Thylaci8 showed regulation at ambient temperatures of between 30 and 40�C.


2021 ◽  
Author(s):  
Kyriakoula Papachristopoulou ◽  
Ilias Fountoulakis ◽  
Panagiotis Kosmopoulos ◽  
Dimitris Kouroutsidis ◽  
Panagiotis I. Raptis ◽  
...  

<p>Monitoring and forecasting cloud coverage is crucial for nowcasting and forecasting of solar irradiance reaching the earth surface, and it’s a powerful tool for solar energy exploitation systems.</p><p>In this study, we focused on the assessment of a newly developed short-term (up to 3h) forecasting system of Downwelling Surface Solar Irradiation (DSSI) in a large spatial scale (Europe and North Africa). This system forecasts the future cloud position by calculating Cloud Motion Vectors (CMV) using Cloud Optical Thickness (COT) data derived from multispectral images from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite and an optical flow motion estimation technique from the computer vision community. Using as input consecutive COT images, CMVs are calculated and cloud propagation is performed by applying them to the latest COT image. Using the predicted COT images, forecasted DSSI is calculated using Fast Radiative Transfer Models (FRTM) in high spatial (5 km over nadir) and temporal resolution (15 min time intervals intervals).</p><p>A first evaluation of predicted COT has been conducted, by comparing the predicted cloud parameter of COT with real observed values derived by the MSG/SEVIRI. Here, the DSSI is validated against ground-based measurements from three Baseline Surface Radiation Network (BSRN) stations, for the year 2017. Also, a sensitivity analysis of the effect on DSSI for different cloud and aerosol conditions is performed, to ensure reliability under different sky and climatological conditions.</p><p>The DSSI short-term forecasting system proposed, complements the existing short-term forecasting techniques and it is suitable for operational deployment of solar energy related systems</p><p>Acknowledgements</p><p>This study was funded by the EuroGEO e-shape (grant agreement No 820852).</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2793 ◽  
Author(s):  
André R. Gonçalves ◽  
Arcilan T. Assireu ◽  
Fernando R. Martins ◽  
Madeleine S. G. Casagrande ◽  
Enrique V. Mattos ◽  
...  

Several studies show the effects of lake breezes on cloudiness over natural lakes and large rivers, but only few contain information regarding large flooded areas of hydroelectric dams. Most Brazilian hydropower plants have large water reservoirs that may induce significant changes in the local environment. In this work, we describe the prevailing breeze mechanism in a Brazilian tropical hydropower reservoir to assess its impacts on local cloudiness and incoming surface solar irradiation. GOES-16 visible imagery, ISCCP database products, and ground measurement sites operated by INMET and LABREN/INPE provided data for the statistical analysis. We evaluate the cloudiness frequency assuming two distinct perspectives: spatial distribution by comparing cloudiness over the water surface and areas nearby its shores, and time analysis by comparing cloudiness prior and after reservoir completion. We also evaluated the solar irradiance enhancement over the water surface compared to the border and land areas surrounding the hydropower reservoir. The results pointed out daily average cloudiness increases moving away from the reservoir in any of the four cardinal directions. When looking at the afternoon-only cloudiness (14 h to 16 h local time), 4% fewer clouds were observed over the flooded area during summer (DJF). This difference reaches 8% during autumn (MAM) and spring (SON). Consequently, the irradiance enhancement at the water surface compared to external areas was around 1.75% for daily average and 4.59% for the afternoon-only average. Our results suggest that floating solar PV power plants in hydropower reservoirs can be an excellent option to integrate both renewable energy resources into a hybrid power generation due to the high solar irradiance in Brazilian territory combined with the prevailing breeze mechanism in large tropical water reservoirs.


2000 ◽  
Vol 90 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Eduardo S. G. Mizubuti ◽  
Donald E. Aylor ◽  
William E. Fry

The effect of solar irradiance (SI) on the viability of sporangia of isolates belonging to two clonal lineages, US-1 and US-8, of Phytophthora infestans was assessed. Exposure during a 3-h period on sunny days (SI > 600 W/m2) drastically reduced germination regardless of the time of day of the exposure. After 1 h of exposure on sunny days, the viability of sporangia decreased by ≈95%, and the effective time necessary to inactivate 95% of the sporangia was 1.1 h. The effective dose to inactivate 95% of the sporangia on sunny days was 2.6 MJ/m2. On overcast (SI < 300 W/m2) days, survival after 3 h was reduced only slightly. Thus, other variables being equal, sporangia will survive hours longer in the atmosphere on cloudy days than on sunny days.


Sign in / Sign up

Export Citation Format

Share Document