scholarly journals A Model to Estimate Stored Carbon in the Upland Forests of the Wanggu Watershed

2020 ◽  
Vol 13 (4) ◽  
pp. 47
Author(s):  
Safril Kasim ◽  
Aminuddin Mane Kandari ◽  
Asramid Yasin ◽  
La Ode Agus Salim Mando

Climate change coupled with deforestation has brought about an increase in greenhouse gas emissions in the atmosphere. One way to control climate change is to reduce greenhouse gas emissions by maintaining the integrity of natural forests and increasing the density of tree populations. This research aimed to (a) identifies the density of stand trees in the upland forests of the Wanggu Watershed; (b) analyze the potential carbon stocks contained in the upstream forests of the Wanggu Watershed; (c) develop a model to estimate potential carbon stocks in the upland forests of the Wanggu Watershed. The land cover classification in this study used the guided classification with the Object-Based Image algorithm. Normalized Difference Vegetation Index (NDVI) was employed as an indicator of vegetation cover density. Field measurements were carried out by calculating the diameter of the stand trees in 30 observation plots. Field biomass values were obtained through allometric equations. Regression analysis was conducted to determine the correlation between NDVI densities and field biomass. The results showed that the best equation for estimating potential carbon stocks in the Wanggu Watershed forest area was y = 3.48 (Exp. 7,435x), with an R2 of 50.2%. Potential above ground biomass carbon in the Wanggu Watershed based on NDVI values was 414,043.26 tons in 2019, consist of protected forest areas of 279,070.15 tons and production forests of 134,973.11 tons. While total above biomass carbon based on field measurement reached 529,541.01 tons, consist of protected forests of 419,197.82 tons and production forests of 110,343.20 tons.

2019 ◽  
Vol 15 (3) ◽  
pp. 20180781 ◽  
Author(s):  
Catherine E. Lovelock ◽  
Carlos M. Duarte

Blue Carbon is a term coined in 2009 to draw attention to the degradation of marine and coastal ecosystems and the need to conserve and restore them to mitigate climate change and for the other ecosystem services they provide. Blue Carbon has multiple meanings, which we aim to clarify here, which reflect the original descriptions of the concept including (1) all organic matter captured by marine organisms, and (2) how marine ecosystems could be managed to reduce greenhouse gas emissions and thereby contribute to climate change mitigation and conservation. The multifaceted nature of the Blue Carbon concept has led to unprecedented collaboration across disciplines, where scientists, conservationists and policy makers have interacted intensely to advance shared goals. Some coastal ecosystems (mangroves, tidal marshes and seagrass) are established Blue Carbon ecosystems as they often have high carbon stocks, support long-term carbon storage, offer the potential to manage greenhouse gas emissions and support other adaptation policies. Some marine ecosystems do not meet key criteria for inclusion within the Blue Carbon framework (e.g. fish, bivalves and coral reefs). Others have gaps in scientific understanding of carbon stocks or greenhouse gas fluxes, or currently there is limited potential for management or accounting for carbon sequestration (macroalgae and phytoplankton), but may be considered Blue Carbon ecosystems in the future, once these gaps are addressed.


2013 ◽  
Vol 20 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Stephen M. Ogle ◽  
Lydia Olander ◽  
Lini Wollenberg ◽  
Todd Rosenstock ◽  
Francesco Tubiello ◽  
...  

2020 ◽  
Author(s):  
Christian Schott

<p><b>Abstract </b></p> <p>While the pedagogical benefits of fieldtrips have long been recognised our ever increasing understanding of the impacts of flying on climate change is presenting educators with a poignant dilemma; the many benefits long associated with international fieldtrips are at odds with the world community’s needs in limiting/halting climatic change. In response, the paper presents the concept of a VR-based virtual fieldtrip as an innovative and carbon-sensitive type of (educational) travel. The paper not only makes the case for virtual fieldtrips as a meaningful learning tool but also explores both the virtual fieldtrip’s impact on Greenhouse Gas emissions and climate change-related learning. On both accounts the initial findings in this paper are very encouraging. More in-depth research is now required to not only develop a deeper understanding of the full breadth of benefits, but also of the diverse weaknesses presented by virtual fieldtrips and how to negotiate them.</p>


2021 ◽  
Vol 5 (4) ◽  
pp. 26-35
Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Objective – This paper sets out to assess perceptions of food retailers regarding climate change, greenhouse gas emission and sustainability in the Nelson Mandela Bay region of South Africa. The primary objective of this study is to investigate the food retailers’ greenhouse gas emissions strategies. Climate change catastrophic potential and the harmful effect that it has had on the community and businesses has led to it being given attention from social media and in literature. Methodology/Technique – This paper covered a literature review that provided the theoretical framework. The empirical study that was carried out included self-administered questionnaires which were distributed to 120 food retailers who were selected from the population using convenience sampling. Findings - The results revealed that most of the respondents were neutral towards the impact of operational factors regarding GHG emission in the food retail sector. Novelty - There is limited research that has been conducted among food retailers from the designated population. The study provided guidelines that will be of assistance to food retailers when dealing with climate change and greenhouse gas emissions impact in the food retail sector. Type of Paper: Empirical. JEL Classification: L66, Q54, Q59. Keywords: Climate Change; Food Retailers; Greenhouse Gas Emissions; Perceptions; Strategies; Sustainability Reference to this paper should be made as follows: Deliwe, A.P; Beck, S.B; Smith, E.E. (2021). Perceptions of Food Retailers Regarding Climate Change and Greenhouse Gas Emissions, Journal of Business and Economics Review, 5(4) 26–35. https://doi.org/10.35609/jber.2021.5.4(3)


2017 ◽  
pp. 78
Author(s):  
Harri Moora ◽  
Evelin Urbel-Piirsalu ◽  
Viktoria Voronova

Waste management has an influence on the greenhouse gas (GHG) formation. The emissions of greenhouse gases vary between the EU countries depending on waste treatment practices and other regional factors such us composition of waste. The aim of this paper was to examine, from a life-cycle perspective, Municipal Solid Waste (MSW) management in the context of greenhouse gas formation and to evaluate the possible reduction of climate change potential of alternative waste management options in Estonia. The paper summarises the results of a case study in Estonia, assessing the climate change impact by 2020 in terms of net greenhouse gas emissions from two possible management scenarios. As a result it can be concluded that better management of municipal waste and diversion of municipal waste away from landfills could significantly reduce the emissions of GHG and, if high rates of recycling and incineration with energy recovery are attained, the net greenhouse gas emissions may even become negative. It means that these waste management options can partly offset the emissions that occurred when the products were manufactured from virgin materials and energy was produced from fossil fuels. This is especially important concerning the climate change impact.


2016 ◽  
Vol 221 ◽  
pp. 270-275 ◽  
Author(s):  
Carlos Quiroz Arita ◽  
Özge Yilmaz ◽  
Semin Barlak ◽  
Kimberly B. Catton ◽  
Jason C. Quinn ◽  
...  

Author(s):  
B. R. Gurjar ◽  
C. S. P. Ojha ◽  
R. Y. Surampalli ◽  
P. P. Walvekar ◽  
V. Tyagi

Sign in / Sign up

Export Citation Format

Share Document