An Equation for Estimating Total Volume of Both Stands and Single Trees of Black Spruce

1983 ◽  
Vol 59 (1) ◽  
pp. 26-29 ◽  
Author(s):  
F. Evert

A stand volume equation is presented for black spruce (Picea mariana (Mill.)B.S.P.), based on a sample of 785 felled trees. To ensure that the equation will provide accurate estimates of the volume of both variously stocked stands and of individual trees, stand volume was expressed as the sum of individual tree volumes without direct reference to the size of the area that the trees occupy. The equation will reduce the problem of forecasting stand volume to the simpler problem of forecasting separately the individual components in the stand-volume equation.

1995 ◽  
Vol 25 (11) ◽  
pp. 1783-1794 ◽  
Author(s):  
Thomas B. Lynch

Three basic techniques are proposed for reducing the variance of the stand volume estimate provided by cylinder sampling and Ueno's method. Ueno's method is based on critical height sampling but does not require measurement of critical heights. Instead, a count of trees whose critical heights are less than randomly generated heights is used to estimate stand volume. Cylinder sampling selects sample trees for which randomly generated heights fall within cylinders formed by tree heights and point sampling plot sizes. The methods proposed here for variance reduction in cylinder sampling and Ueno's method are antithetic variates, importance sampling, and control variates. Cylinder sampling without variance reduction was the most efficient of 12 methods compared in computer simulation that used estimated measurement times. However, cylinder sampling requires knowledge of a combined variable individual tree volume equation. Of the three variance reduction techniques applied to Ueno's method, antithetic variates performed best in computer simulation.


Botany ◽  
2011 ◽  
Vol 89 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Marios Viktora ◽  
Rodney A. Savidge ◽  
Om P. Rajora

Black spruce (Picea mariana) reproduces sexually from seeds and asexually by layering. There is a prevalent concept that clonal reproduction maintains populations of this species in the subarctic and arctic regions. We used microsatellite DNA markers of the nuclear genome to investigate the genetic structure of montane and subalpine black spruce populations from the Western Yukon Plateau in relation to this concept. Sixty individual trees at a minimum distance of 4 m from each other were sampled from each of four populations and individual trees were genotyped for eight microsatellite loci. Each of the 60 individuals from three montane pure black spruce populations growing on flat terrain at relatively low elevations had unique multilocus genotypes, indicating an absence of clonal structure in those populations. However, in an anthropologically undisturbed climax white spruce-dominated subalpine black spruce population on a northwest slope near Mount Nansen, the majority of the sampled individuals belonged to eight genetically distinct clones (genets). Clone size differed by altitude, the dominant genet being nearest the timberline–tundra ecotone. The results indicate that black spruce reproduction is variable and adaptive, being primarily sexual in flat-terrain montane populations previously subjected to fire disturbance, but mixed vegetative–sexual in the anthropogenically undisturbed subalpine population. This study is the first to employ molecular markers a priori to examine the mode of reproduction in natural black spruce populations.


Iraq ◽  
1994 ◽  
Vol 56 ◽  
pp. 123-133 ◽  
Author(s):  
Pauline Albenda

The Brooklyn Museum houses twelve stone slabs with carved decoration from the Northwest Palace of Ashurnasirpal II. The motif of a stylized tree — the so-called Sacred Tree (see Figs. 1, 4, 6) — appears on seven of those slabs which come from rooms F, I, L, S, T of the ninth century palace at Nimrud. These tree renderings are representative of the sacred tree-type found in ten rooms of the royal residence and the west wing. Approximately 96 sacred trees, in two-register arrangement, appeared on the pictorial decorations in room I; the same motif occurred about 75 times in one-register arrangement on the reliefs of the other rooms. The abundance of the sacred tree motif on the wall decorations of the Northwest Palace attests to the significance of this plant. Its design deserves investigation; in Layard's words, “the tree, evidently a sacred symbol, is elaborately and tastefully formed.”In his study of the Ashurnasirpal II reliefs in American collections, Stearns did not attempt to list the sacred trees, because “variations in the sacred tree occur only in minor details,” and “the tree in itself is rarely useful in identifying the location of the reliefs.” These statements make clear Stearns' belief that the sacred trees were nearly alike. Other scholars, notably Weidner and Reade, have pointed out that on a number of slabs now in American and European museums are carvings of matching half trees, therefore indicating that when paired, these trees belonged to adjoining slabs originally. In trying to match half trees, one finds that individual sacred trees do differ in the rendering of specific details. Bleibtreu, in her analysis of the sacred tree-type, lists three variants of the flower found on the palmette-garland framing the individual tree on three sides. The present author, after examining the sacred trees carved on the slabs in The Brooklyn Museum, concludes that the design of the tree-type is more varied than heretofore presumed, and that its construction is more complex than indicated in previous descriptions of the subjects. An analysis of the Assyrian sacred tree-type may lead to possible conclusions regarding its intended image: a stylized palm tree, a cult object, an emblem of vegetation or “tree of life”, an imperial symbol, or a combination of those forms. In addition, one may consider to what extent the rendering of individual trees was the consequence of artistic inventiveness.


2020 ◽  
Vol 12 (17) ◽  
pp. 2725
Author(s):  
Qixia Man ◽  
Pinliang Dong ◽  
Xinming Yang ◽  
Quanyuan Wu ◽  
Rongqing Han

Urban vegetation extraction is very important for urban biodiversity assessment and protection. However, due to the diversity of vegetation types and vertical structure, it is still challenging to extract vertical information of urban vegetation accurately with single remotely sensed data. Airborne light detection and ranging (LiDAR) can provide elevation information with high-precision, whereas hyperspectral data can provide abundant spectral information on ground objects. The complementary advantages of LiDAR and hyperspectral data could extract urban vegetation much more accurately. Therefore, a three-dimensional (3D) vegetation extraction workflow is proposed to extract urban grasses and trees at individual tree level in urban areas using airborne LiDAR and hyperspectral data. The specific steps are as follows: (1) airborne hyperspectral and LiDAR data were processed to extract spectral and elevation parameters, (2) random forest classification method and object-based classification method were used to extract the two-dimensional distribution map of urban vegetation, (3) individual tree segmentation was conducted on a canopy height model (CHM) and point cloud data separately to obtain three-dimensional characteristics of urban trees, and (4) the spatial distribution of urban vegetation and the individual tree delineation were assessed by validation samples and manual delineation results. The results showed that (1) both the random forest classification method and object-based classification method could extract urban vegetation accurately, with accuracies above 99%; (2) the watershed segmentation method based on the CHM could extract individual trees correctly, except for the small trees and the large tree groups; and (3) the individual tree segmentation based on point cloud data could delineate individual trees in three-dimensional space, which is much better than CHM segmentation as it can preserve the understory trees. All the results suggest that two- and three-dimensional urban vegetation extraction could play a significant role in spatial layout optimization and scientific management of urban vegetation.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 148 ◽  
Author(s):  
Marta Fernández-Álvarez ◽  
Julia Armesto ◽  
Juan Picos

This paper describes a methodology using LiDAR point clouds with an ultra-high resolution in the characterization of forest fuels for further wildfire prevention and management. Biomass management strips were defined in three case studies using a particular Spanish framework. The data were acquired through a UAV platform. The proposed methodology allows for the detection, measurement and characterization of individual trees, as well as the analysis of shrubs. The individual tree segmentation process employed a canopy height model, and shrub cover LiDAR-derived models were used to characterize the vegetation in the strips. This way, the verification of the geometric legal restrictions was performed automatically and objectively using decision trees and GIS tools. As a result, priority areas, where wildfire prevention efforts should be concentrated in order to control wildfires, can be identified.


1990 ◽  
Vol 20 (3) ◽  
pp. 274-279 ◽  
Author(s):  
Thomas B. Lynch

Stand volume estimators are developed in the context of vertical line sampling that depend on counts of sample trees only, rather than on measurements of sample tree dimensions. These estimators are based on three commonly used individual tree volume equations: the constant form factor volume equation, the combined variable volume equation with negative intercept, and the combined variable volume equation with positive intercept. Fieldwork for each of the estimators involves comparison of the squared dbh's of trees that would qualify for selection in an ordinary vertical line sample with numbers chosen randomly from the interval bounded by zero and a fixed maximum squared dbh. Two of the estimators choose sample trees with probability exactly proportional to an individual tree volume equation.


1989 ◽  
Vol 65 (2) ◽  
pp. 102-106 ◽  
Author(s):  
Bijan Payandeh

Stem analyse of 67 peatland black spruce trees from previously drained experimental areas in northeastern Ontario that had been fertilized was used to examine effects on growth of individual trees. Stepwise multiple linear regression analysis was used to express pre- and post-fertilization diameter and volume growth as a function of site, stand and individual tree characteristics and amelioration treatments.Results indicated that, on average, diameter growth increased by 4% after fertilization. Standard volume equations, in comparison with sectional volume summation underestimated both inside- and outside-bark tree volumes by about 3%.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 270 ◽  
Author(s):  
Zeynab Foroozan ◽  
Jussi Grießinger ◽  
Kambiz Pourtahmasi ◽  
Achim Bräuning

To develop multi-century stable isotope chronologies from tree rings, pooling techniques are applied to reduce laboratory costs and time. However, pooling of wood samples from different trees may have adverse effects on the signal amplitude in the final isotope chronology. We tested different pooling approaches to identify the method that is most cost-efficient, without compromising the ability of the final chronology to reflect long-term climate variability as well as climatic extreme years. As test material, we used δ18O data from juniper trees (Juniperus polycarpus) from Northern Iran. We compared inter-tree and shifted 5-year blocks serial pooling of stable isotope series from 5 individual trees and addition of one single series to a shifted serial pooled chronology. The inter-tree pooled chronology showed the strongest climate sensitivity and most synchronous δ18O variations with the individual tree ring analyses, while the shifted block chronologies showed a marked decline in high-frequency signals and no correlations with climate variables of the growth year. Combinations of block-pooled and single isotope series compensated the high-frequency decline but added tree-individual climatic signals. Therefore, we recommend pooling calendar synchronous tree rings from individual trees as a viable alternative to individual-tree isotope measurements for robust paleoclimate reconstructions.


1995 ◽  
Vol 25 (6) ◽  
pp. 871-877 ◽  
Author(s):  
Thomas B. Lynch

A recently developed method of individual-tree volume prediction uses measurements of two lower-stem diameters, rather than the more traditional DBH and height measurements, to estimate stemwood. One form of the equation is linear with respect to volume between the two diameter measurements, as computed by Smalian's formula, and can be algebraically rearranged into the sum of two equations, one linear with respect to the square of the topmost lower-stem diameter, the other linear with respect to the square of the bottom lower-stem diameter. These two equations have the same form as local volume equations that are linear functions of the square of diameter. Because of this, a variation of horizontal point sampling can be used to select trees with probability exactly proportional to each of the equations. Forest volumes can be estimated from counts of trees obtained by comparing the point sampling gauge angle with individual tree diameters at the lower-stem diameter measurement points used by the individual-tree volume equation. To account for the negative intercept term in the linear equations, trees within a small fixed-radius plot are not included in the counts.


FLORESTA ◽  
2006 ◽  
Vol 36 (3) ◽  
Author(s):  
Leif Nutto ◽  
Peter Spathelf ◽  
Irene Seling

In the present work a thinning program and a model describing dynamic of crown base recession for Eucalyptus grandis was established on an individual tree basis. Therefore, 485 trees were measured on temporary plots in forests of the companies Klabin Riocell (Guaíba), Todeschini (Cachoeira do Sul), the Federal University of Santa Maria and Aracruz Company, located in Rio Grande do Sul, Espirito Santo and Bahia, Brazil. A straight relationship between crown width and diameter at breast height (DBH) was found by using regression analysis. The equation obtained was crown width = e0.504+0.0307* DBH, with a coefficient of determination of 0.78 and a standard error of 0.034. With this equation the standing space of the individual trees was calculated over the whole rotation period, taking into account a crown cover of 70 %. Therefore the number of trees which can be grown on a hectare was derived for different variants of management systems aiming to produce eucalypt sawlogs in short rotation periods. Beside this a multivariate model describing height of crown base as a function of DBH and total height was found. Based upon this model the dynamics of crown base recession for different site qualities and thinning regimes are described, giving advice for time and intensity of green pruning.


Sign in / Sign up

Export Citation Format

Share Document