Plantation Establishment in the Boreal Forest: Glyphosate, Hexazinone, and Manual Weed Control

1984 ◽  
Vol 60 (5) ◽  
pp. 283-287 ◽  
Author(s):  
R. F. Sutton

One manual and two chemical (mist-blown foliar spray of glyphosate and hexazinone) methods of vegetation control were applied in two 17.1 m × 17.1 m plots per treatment in a 1969 boreal cutover in Forest Section B7 where natural jack pine (Pinus banksiana Lamb.) regeneration, mostly about 1 m tall, was overtopped by post-harvest deciduous growth, including sapling aspen (Populus tremuloides Michx.). Season of application(fall = September 1976; summer = July 1977) and, for the chemical treatments, rate of application (0. 1, 2, and 4 kg ai/ha) were evaluated for their effect on (a) deciduous competition, (b) natural jack pine regeneration, and (c) white spruce (picea glauca [Moench] Voss) outplanted as bare-root 2 + 2 stock in June 1978. Annual or more frequent assessments were made through 1983. With (a), manual treatment was more effective in summer than in fall but did not effect sustained control. Of the fall-applied herbicide treatments, only glyphosate at 2 and 4 kg ai/ha was efficacious. Sustained control over several years was obtained with summer-applied glyphosate and, to a lesser degree, hexazinone. With (b), jack pine was not benefited by any treatment. With (c), frost and browsing obscured treatment effects, but the "best" control of deciduous vegetation was probably silviculturally detrimental to the spruce.

2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


1988 ◽  
Vol 64 (4) ◽  
pp. 315-319 ◽  
Author(s):  
Z. Chrosciewicz

An experimental burn in conjunction with a seed-tree system was successful in regenerating jack pine (Pinus banksiana Lamb.) on a fresh to somewhat moist upland, loamy till, cutover site in central Saskatchewan. About 20 well-formed, uniformly spaced seed trees per hectare were left standing during timber harvest. The ignition of logging slash was carried out under preselected weather and fuel conditions so that favorable seedbeds and adequate seed dispersal from the seed trees were produced. Four growing seasons after burning, jack pine stocking by 4-m2 quadrats was 90% with 12 195 seedlings/ha. Aspen (Populus tremuloides Michx.), to a lesser degree black spruce (Picea mariana [Mill.] B.S.P.), and other companion tree species also regenerated with the pine. Various seedbed and regeneration characteristics as well as height growth rates are discussed. Key words: Pinus banksiana, slash burning, seed-tree system, forest regeneration, growth rates, central Saskatchewan.


2019 ◽  
pp. 297-307
Author(s):  
Yuqing Yang ◽  
Shongming Huang ◽  
Robert Vassov ◽  
Brad Pinno ◽  
Sophan Chhin

Climate-sensitive height–age models were developed for top height trees of trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.), and white spruce (Picea glauca (Moench) Voss) in natural and reclaimed oil sands stands. We used stem analysis data collected from the Athabasca oil sands region in northern Alberta, Canada, and climate data generated by the ClimateWNA model. Height–age trajectories differed between top height trees in natural and reclaimed stands for jack pine and white spruce, but not for trembling aspen. At a given age, white spruce top height trees were taller and jack pine top height trees were shorter in reclaimed stands than those in natural stands, suggesting that it is easier to achieve similar forest productivity for oil sands sites reclaimed with white spruce stands than for sites reclaimed with jack pine stands. The principal climate variables were growing season (May to September) precipitation averaged over the previous 10 years for trembling aspen and jack pine and summer (June to August) precipitation averaged over the previous 10 years for white spruce. These variables had positive effects on the height–age trajectories.


2003 ◽  
Vol 33 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Ryan D Hangs ◽  
J Diane Knight ◽  
Ken CJ Van Rees

Little is known about the N uptake abilities of competitor species and planted seedlings in the boreal forest. The objective of this study was to determine the Michaelis–Menten kinetic parameters of NH4+ and NO3– for white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb.) seedlings, and three competitive common boreal forest early successional species: aspen (Populus tremuloides Michx.), fireweed (Epilobium angustifolium L.), and cala magrostis (Calamagrostis canadensis (Michx.) Beauv.). Uptake kinetics were measured in hydroponic cultures and expressed as maximum uptake (Imax) and ion affinity (Km). The ranking of Imax values (pmol·cm-2·s–1) for NH4+ uptake was calamagrostis (84.6), fireweed (58.1), white spruce (20.7), aspen (12.5), and jack pine (10.9), and for NO3– uptake was calamagrostis (17.7), fireweed (12.5), aspen (5.8), white spruce (4.5), and jack pine (2.1). The ranking of Km values (µM) for NH4+ uptake was calamagrostis (125.9), fireweed (163.8), aspen (205.7), white spruce (217.1), and jack pine (270.5), and for NO3– uptake was calamagrostis (229.9), fireweed (274.6), aspen (336.5), white spruce (344.5), and jack pine (350.5). Calamagrostis exhibited the greatest uptake rates and affinity for NH4+ and NO3–, suggesting that silviculture practices that specifically reduce establishment of this grass should benefit the growth of planted seedlings.


2006 ◽  
Vol 36 (9) ◽  
pp. 2331-2340 ◽  
Author(s):  
Suzanne Brais ◽  
David Paré ◽  
Cédric Lierman

To assess nutrient dynamics in decomposing logs of trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.), we monitored mass losses and changes in N and P contents in dead boles from a chronosequence of sites following stand-replacing disturbances. To assess the importance of wood decomposition to nutrient cycling, we compared net estimates of nutrient release from logs with net nutrient immobilization in live-tree biomass of stands as a function of time since disturbance. Mineralization rates were 0.060, 0.053, 0.038, and 0.020·year–1 for trembling aspen, white birch, white spruce, and jack pine logs, respectively. Trembling aspen boles released large quantities of N and P during the first year of decomposition (51 kg·ha–1 of N and 7 kg·ha–1 of P, assuming a bole volume of 150 m3·ha–1). White birch boles acted initially as a nutrient sink and delayed the release of immobilized nutrients until a period when the stand's net nutrient immobilization rates were highest. Jack pine boles appeared to be intermediate in terms of their contribution as a sink or a source of nutrients but, in mature stands, provided up to 40% of N and 26% of P immobilized annually in tree biomass. As pure stands of white spruce are rare in boreal Quebec, information on nutrient accumulation in white spruce stands was not available.


2006 ◽  
Vol 36 (8) ◽  
pp. 1943-1950 ◽  
Author(s):  
Kevin J Kemball ◽  
G. Geoff Wang ◽  
A Richard Westwood

We examined jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) seed germination and seedling recruitment in aspen (Populus tremuloides Michx.) and conifer mixedwood stands following the 1999 Black River fire in southeastern Manitoba, Canada. Three postfire seedbed types were tested: scorched (surface litter only partially consumed), lightly burned (surface litter consumed with little or no duff consumption), and severely burned (complete consumption of litter and duff exposing mineral soil). Seeds were sown in 1999, 2000, and 2001, and each cohort was monitored for 3 years. In 1999, severely burned seedbeds had poor germination, while scorched seedbeds had the highest germination. The reverse was true in 2001. After the first growing season, continued survival of seedlings was greater on severely burned seedbeds for all three cohorts. However, better survival on severely burned seedbeds was not sufficient to overcome poor germination in 1999 and 2000. When using artificial seeding to promote conifer regeneration, we recommend a delay of one full year after a severe spring fire for jack pine and two full years for black spruce and white spruce on boreal aspen and conifer mixedwood sites.


1953 ◽  
Vol 29 (2) ◽  
pp. 139-143 ◽  
Author(s):  
C. G. Riley

Hail occasionally causes severe damage in forest stands. Near Candle Lake, Saskatchewan, a severe bail storm damaged 70- to 80-year stands including mixed white spruce (Picea glauca (Moench) Voss), aspen (Populus tremuloides Michx.), and jack pine (Pinus banksiana Lamb.); and pure jack pine. Characteristic symptoms seven years after the initial occurrence included: dead trees, particularly jack pine; dead tops; crowns partly dead and conspicuously thin on the side that faced the storm; open and healed wounds all on the same side of the trees, especially on the thin-barked upper parts, all traceable to the annual ring of the same year.


2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 686 ◽  
Author(s):  
M. Quiñonez-Piñón ◽  
Caterina Valeo

The translucence and color change in wood methods, which are commonly used to differentiate sapwood from heartwood in tree cores, are compared against the microscopic analysis of wood anatomy method for determining sapwood depth. The translucence method was tested on collected wood cores of White Spruce (Picea glauca (Moench) Voss) and Jack Pine (Pinus banksiana Lamb.). The color change in wood method was tested on Trembling Aspen (Populus tremuloides Michx.). For every statistical comparison, sapwood depth values obtained with the translucence or color-change methods were significantly different from those obtained using the microscopic analysis. Using the sapwood depth values obtained with microscopy as a reference, the bias associated with the translucence or color-change methods used on Picea glauca, Pinus banksiana and Populus tremuloides constantly under- or overestimated sapwood depths within −0.3 cm to 1.6 cm; −4.9 cm to 0.5 cm; and 0 to 1.8 cm, respectively. The different ranges of over- and underestimation arise from species-specific anatomical characteristics. Estimates for the errors in sapwood depth, when the depth is measured using either the translucence or color-change methods, are presented. These relationships and research outcomes will lead to more efficient forest monitoring and improved estimates of forest water balance, which in turn will lead to improved forest management in the face of climate change.


1991 ◽  
Vol 71 (4) ◽  
pp. 397-410 ◽  
Author(s):  
X. J. Xiao ◽  
D. W. Anderson ◽  
J. R. Bettany

Pedogenesis and its effect on calcium (Ca), magnesium (Mg) and phosphorus (P) was studied on a sequence of seven Gray Luvisol soils in central Saskatchewan. The soils were formed on calcareous glacial till under trembling aspen (Populus tremuloides Michx), mixedwood (aspen and white spruce) (Picea glauca (Moench) Voss)) and coniferous (black spruce and jack pine) (Picea mariana (Mill) BSP and Pinus banksiana Lamb) forests. Soils under aspen had the highest concentration of total and exchangeable Ca and Mg in litter layers and Ae horizons, and had Ae and Bt horizons that were least acidic. The most acidic Ae and Bt horizons and lowest amounts of Ca and Mg occurred under coniferous forests, whereas the soils under mixedwood stands were intermediate. The thickness of eluvial (Ae and AB) horizons increased along the aspen to coniferous sequence. All soils had about 40% less P in their A and B horizons than was calculated to have been present at the start of soil formation. The greatest decrease in P was observed in the thickest and most acidic soil under coniferous forest. The present litter layers and vegetation make up only a small proportion of the P removed from the mineral soil. Unusually large amounts of P appear to have been translocated from A and B horizons during development of Gray Luvisols, in comparison to Chernozemic or even Podzolic soils. Our hypothesis proposes that P is ineffectively retained in the solum as P-clay-humus, or iron-P complexes and that organic P moves along with the soil water, laterally and downslope through permeable Ae horizon over less permeable Bt horizons, or vertically through macropores. Key words: Boreal forest, nutrient cycling, phosphorus losses, weathering, soil formation


Sign in / Sign up

Export Citation Format

Share Document