scholarly journals A Novel Texture Descriptor: Circular Parts Local Binary Pattern

2021 ◽  
Vol 40 (2) ◽  
pp. 105-114
Author(s):  
Ibtissam Al Saidi ◽  
Mohammed Rziza ◽  
Johan Debayle

Local Binary Pattern (LBP) are considered as a classical descriptor for texture analysis, it has mostly been used in pattern recognition and computer vision applications. However, the LBP gets information from a restricted number of local neighbors which is not enough to describe texture information, and the other descriptors that get a large number of local neighbors suffer from a large dimensionality and consume much time. In this regard, we propose a novel descriptor for texture classification known as Circular Parts Local Binary Pattern (CPLBP) which is designed to enhance LBP by extending the area of neighborhood from one to a region of neighbors using polar coordinates that permit to capture more discriminating relationships that exists amongst the pixels in the local neighborhood which increase efficiency in extracting features. Firstly, the circle is divided into regions with a specific radius and angle. After that, we calculate the average gray-level value of each part. Finally, the value of the center pixel is compared with these average values. The relevance of the proposed idea is validate in databases Outex 10 and 12. A complete evaluation on benchmark data sets reveals CPLBP's high performance. CPLBP generates the score of 99.95 with SVM classification.

2020 ◽  
Vol 6 (6) ◽  
pp. 53
Author(s):  
Alice Porebski ◽  
Vinh Truong Hoang ◽  
Nicolas Vandenbroucke ◽  
Denis Hamad

LBP (Local Binary Pattern) is a very popular texture descriptor largely used in computer vision. In most applications, LBP histograms are exploited as texture features leading to a high dimensional feature space, especially for color texture classification problems. In the past few years, different solutions were proposed to reduce the dimension of the feature space based on the LBP histogram. Most of these approaches apply feature selection methods in order to find the most discriminative bins. Recently another strategy proposed selecting the most discriminant LBP histograms in their entirety. This paper tends to improve on these previous approaches, and presents a combination of LBP bin and histogram selections, where a histogram ranking method is applied before processing a bin selection procedure. The proposed approach is evaluated on five benchmark image databases and the obtained results show the effectiveness of the combination of LBP bin and histogram selections which outperforms the simple LBP bin and LBP histogram selection approaches when they are applied independently.


Author(s):  
Richa Sharma ◽  
Madan Lal

Texture classification is an important issue in digital image processing and the Local Binary pattern (LBP) is a very powerful method used for analysing textures. LBP has gained significant popularity in texture analysis world. However, LBP method is very sensitive to noise and unable to capture the macrostructure information of the image. To address its limitation, some variants of LBP have been defined. In this chapter, the texture classification performance of LBP has been compared with the five latest high-performance LBP variants, like Centre symmetric Local Binary Pattern (CS-LBP), Orthogonal Combination of Local Binary Patterns (OC LBP), Rotation Invariant Local Binary Pattern (RLBP), Dominant Rotated Local Binary Pattern (DRLBP) and Median rotated extended local binary pattern (MRELBP). This was by using the standard images Outex_TC_0010 dataset. From the experimental results it is concluded that DRLBP and MRELBP are the best methods for texture classification.


2021 ◽  
Vol 17 (3) ◽  
pp. 1548-1561
Author(s):  
Kristian Kříž ◽  
Martin Nováček ◽  
Jan Řezáč

2003 ◽  
Vol 15 (9) ◽  
pp. 2227-2254 ◽  
Author(s):  
Wei Chu ◽  
S. Sathiya Keerthi ◽  
Chong Jin Ong

This letter describes Bayesian techniques for support vector classification. In particular, we propose a novel differentiable loss function, called the trigonometric loss function, which has the desirable characteristic of natural normalization in the likelihood function, and then follow standard gaussian processes techniques to set up a Bayesian framework. In this framework, Bayesian inference is used to implement model adaptation, while keeping the merits of support vector classifier, such as sparseness and convex programming. This differs from standard gaussian processes for classification. Moreover, we put forward class probability in making predictions. Experimental results on benchmark data sets indicate the usefulness of this approach.


2013 ◽  
Vol 12 (6) ◽  
pp. 2858-2868 ◽  
Author(s):  
Nadin Neuhauser ◽  
Nagarjuna Nagaraj ◽  
Peter McHardy ◽  
Sara Zanivan ◽  
Richard Scheltema ◽  
...  

2018 ◽  
Vol 4 (10) ◽  
pp. 112 ◽  
Author(s):  
Mariam Kalakech ◽  
Alice Porebski ◽  
Nicolas Vandenbroucke ◽  
Denis Hamad

These last few years, several supervised scores have been proposed in the literature to select histograms. Applied to color texture classification problems, these scores have improved the accuracy by selecting the most discriminant histograms among a set of available ones computed from a color image. In this paper, two new scores are proposed to select histograms: The adapted Variance score and the adapted Laplacian score. These new scores are computed without considering the class label of the images, contrary to what is done until now. Experiments, achieved on OuTex, USPTex, and BarkTex sets, show that these unsupervised scores give as good results as the supervised ones for LBP histogram selection.


2018 ◽  
Vol 8 (12) ◽  
pp. 2421 ◽  
Author(s):  
Chongya Song ◽  
Alexander Pons ◽  
Kang Yen

In the field of network intrusion, malware usually evades anomaly detection by disguising malicious behavior as legitimate access. Therefore, detecting these attacks from network traffic has become a challenge in this an adversarial setting. In this paper, an enhanced Hidden Markov Model, called the Anti-Adversarial Hidden Markov Model (AA-HMM), is proposed to effectively detect evasion pattern, using the Dynamic Window and Threshold techniques to achieve adaptive, anti-adversarial, and online-learning abilities. In addition, a concept called Pattern Entropy is defined and acts as the foundation of AA-HMM. We evaluate the effectiveness of our approach employing two well-known benchmark data sets, NSL-KDD and CTU-13, in terms of the common performance metrics and the algorithm’s adaptation and anti-adversary abilities.


Sign in / Sign up

Export Citation Format

Share Document