scholarly journals QUICK DETERMINATION OF CRYSTAL SIZE DISTRIBUTIONS OF ROCKS BY MEANS OF A COLOR SCANNER

2011 ◽  
Vol 22 (1) ◽  
pp. 27 ◽  
Author(s):  
Simone Tarquini ◽  
Pietro Armienti

An acquisition and analysis method based on a commercial, low-cost, high-resolution film scanner is presented. It allows to collect data from standard rock thin sections with a resolution up to 9.4 μm per pixel. Common and general purpose facilities (scanner + PC + image analysis software) may thus be transformed in an appropriate tool for quantitative textural analysis of rocks. The procedure implies the acquisition of four images with crossed polarizers and one parallel light image. Crystal boundaries are extracted from fields in crossed polarizers, while markers for mineral recognition are obtained thresholding the parallel light image. The method is tested for fresh rocks with simple mineralogy (harzburgites and marbles) with no more than three phases, all exhibiting well distinct optical properties. Image processing is performed developing procedures with VISILOG 5.2 package. 2-D size data from binary images are converted to 3-D size data applying stereological corrections. 3-D data are reported in bi-logarithmic diagrams, plotting the crystal number density versus characteristic lengths. The harzburgite samples show a scale invariance of size distributions of olivine while mosaic equant marbles exhibit a different size distribution pattern, without scale invariance and a relative maximum.

Alloy Digest ◽  
1983 ◽  
Vol 32 (5) ◽  

Abstract AISI 1030 is a plain carbon steel containing nominally 0.30% carbon. It is used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered conditions for general-purpose engineering and construction. It provides medium strength and toughness at low cost. Among its many uses are axles, bolts, gears and building sections. All data are on a single heat of fine-grain steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-94. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1971 ◽  
Vol 20 (6) ◽  

Abstract AISI 1040 is a medium-carbon steel used in the hot-rolled, normalized, oil quenched and tempered or water quenched and tempered condition for general purpose engineering and construction. It provides medium strength and toughness at low cost. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-41. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1979 ◽  
Vol 28 (4) ◽  

Abstract SAE 1037 is a carbon steel that provides medium strength and medium toughness at low cost. It is used in the hot-rolled, normalized, oil-quenched-and-tempered and water-quenched-and-tempered conditions. This medium-carbon steel is used for construction and for general-purpose engineering. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-76. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1977 ◽  
Vol 26 (2) ◽  

Abstract SAF 1039 steel can be used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered condition for general-purpose construction and engineering. Its manganese content is a little higher than some of the other standard carbon steels with comparable carbon levels; this gives it slightly higher hardenability and hardness. It provides medium strength and toughness at low cost. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-66. Producer or source: Carbon steel mills.


2005 ◽  
Vol 33 (1) ◽  
pp. 123-128
Author(s):  
R. P. Grayson ◽  
A. J. Plater

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2298
Author(s):  
Pablo Cano Marchal ◽  
Chiara Sanmartin ◽  
Silvia Satorres Martínez ◽  
Juan Gómez Ortega ◽  
Fabio Mencarelli ◽  
...  

The organoleptic profile of a Virgin Olive Oil is a key quality parameter that is currently obtained by human sensory panels. The development of an instrumental technique capable of providing information about this profile quickly and online is of great interest. This work employed a general purpose e-nose, in lab conditions, to predict the level of fruity aroma and the presence of defects in Virgin Olive Oils. The raw data provided by the e-nose were used to extract a set of features that fed a regressor to predict the level of fruity aroma and a classifier to detect the presence of defects. The results obtained were a mean validation error of 0.5 units for the prediction of fruity aroma using lasso regression; and 88% accuracy for the defect detection using logistic regression. Finally, the identification of two out of ten specific sensors of the e-nose that can provide successful results paves the way to the design of low-cost specific electronic noses for this application.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


2021 ◽  
Author(s):  
D. J. Leech ◽  
S. Lightfoot ◽  
D. Huson ◽  
A. Stratakos

AbstractWe propose a design for a simple paste extruder modification that can be used for the selective deposition and patterning of gels and pastes, using a desktop 3D printer as the primary platform. This technology has found use with a variety of materials in seemingly disparate fields, including the printing of ceramics, food and biological materials, each with a variety of material-specific solutions to enhance printability. However, we focus on a syringe-pump driven system that is simple, low-cost, modular, easily assembled and highly modifiable with a low barrier of entry in order to maximise the generalisability and range of printable materials.


Author(s):  
Awais Nazir ◽  
Muhammad Shahzad Younis ◽  
Muhammad Khurram Shahzad

Speckle noise is one of the most difficult noises to remove especially in medical applications. It is a nuisance in ultrasound imaging systems which is used in about half of all medical screening systems. Thus, noise removal is an important step in these systems, thereby creating reliable, automated, and potentially low cost systems. Herein, a generalized approach MFNR (Multi-Frame Noise Removal) is used, which is a complete Noise Removal system using KDE (Kernal Density Estimation). Any given type of noise can be removed if its probability density function (PDF) is known. Herein, we extracted the PDF parameters using KDE. Noise removal and detail preservation are not contrary to each other as the case in single-frame noise removal methods. Our results showed practically complete noise removal using MFNR algorithm compared to standard noise removal tools. The Peak Signal to Noise Ratio (PSNR) performance was used as a comparison metric. This paper is an extension to our previous paper where MFNR Algorithm was showed as a general purpose complete noise removal tool for all types of noises


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Ibrahim S. Alsukayti

The technological breakthrough of the Internet of Things (IoT) drives the emergence of a wide scope of smart IoT solutions in different domains. Advancing the different technological aspects of these solutions requires effective IoT implementations and experimentations. This is widely addressed following low-cost and scalable methods such as analytical modeling and simulation. However, such methods are limited in capturing physical characteristics and network conditions in a realistic manner. Therefore, this paper presents an innovative IoT testbed system which facilitates practical experimentation of different IoT solutions in an effective environment. The testbed design was developed towards a general-purpose multidimensional support of different IoT properties including sensing, communication, gateway, energy management, data processing, and security. The implementation of the testbed was realized based on integrating a set of robust hardware components and developing a number of software modules. To illustrate its effectiveness, the testbed was utilized to experiment with energy efficiency of selected IoT communication technologies. This resulted in lower energy consumption using the Bluetooth Low Energy (BLE) technology compared to the Zigbee and 6LoWPAN technologies. A further evaluation study of the system was carried out following the Technology Acceptance Model (TAM). As the study results indicated, the system provides a simple yet efficient platform for conducting practical IoT experiments. It also had positive impact on users’ behavior and attitude toward IoT experimentation.


Sign in / Sign up

Export Citation Format

Share Document