scholarly journals Anti-inflammatory, anti-oxidative stress and novel therapeutic targets for cholestatic liver injury

2019 ◽  
Vol 13 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Yafei Zhang ◽  
Yuxuan Lu ◽  
Hong Ji ◽  
Yiming Li
2018 ◽  
Vol 19 (9) ◽  
pp. 2509 ◽  
Author(s):  
Jing Zhang ◽  
Xin Guo ◽  
Taiji Hamada ◽  
Seiya Yokoyama ◽  
Yuka Nakamura ◽  
...  

Accumulating evidence indicates that oxidative stress plays a critical role in initiating the progression of inflammatory and fibrotic liver diseases, including cholestatic hepatitis. Peroxiredoxin 4 (PRDX4) is a secretory antioxidase that protects against oxidative damage by scavenging reactive oxygen species (ROS) in both the intracellular compartments and extracellular space. In this study, we examined the in vivo net effects of PRDX4 overexpression in a murine model of cholestasis. To induce cholestatic liver injury, we subjected C57BL/6J wild-type (WT) or human PRDX4 (hPRDX4) transgenic (Tg) mice to sham or bile duct ligation (BDL) surgery for seven days. Our results showed that the liver necrosis area was significantly suppressed in Tg BDL mice with a reduction in the severity of liver injuries. Furthermore, PRDX4 overexpression markedly reduced local and systemic oxidative stress generated by BDL. In addition, suppression of inflammatory cell infiltration, reduced proliferation of hepatocytes and intrahepatic bile ducts, and less fibrosis were also found in the liver of Tg BDL mice, along with a reduced mortality rate after BDL surgery. Interestingly, the composition of the hepatic bile acids (BAs) was more beneficial for Tg BDL mice than for WT BDL mice, suggesting that PRDX4 overexpression may affect BA metabolism during cholestasis. These features indicate that PRDX4 plays an important role in protecting against liver injury following BDL and might be a promising therapeutic modality for cholestatic diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yang Feng ◽  
Ruixia Cui ◽  
Zeyu Li ◽  
Xia Zhang ◽  
Yifan Jia ◽  
...  

Acetaminophen- (APAP-) induced hepatic injury is an important clinical challenge. Oxidative stress, inflammation, apoptosis, and endoplasmic reticulum stress (ERS) contribute to the pathogenesis. Methane has potential anti-inflammatory, antioxidant, and antiapoptotic properties. This project was aimed at studying the protective effects and relative mechanisms of methane in APAP-induced liver injury. In the in vivo experiment, C57BL/6 mice were treated with APAP (400 mg/kg) to induce hepatic injury followed by methane-rich saline (MRS) 10 ml/kg i.p. after 12 and 24 h. We observed that MRS alleviated the histopathological lesions in the liver, decreased serum aminotransferase levels, reduced the levels of inflammatory cytokines, suppressed the nuclear factor-κB expression. Further, we found that MRS relieved oxidative stress by regulating the Nrf2/HO-1/NQO1 signaling pathway and their downstream products after APAP challenge. MRS also regulated proteins associated with ERS-induced apoptosis. In the in vitro experiment, the L-02 cell line was treated with APAP (10 mM) to induce hepatic injury. We found that a methane-rich medium decreased the levels of reactive oxygen species (DHE fluorescent staining), inhibited apoptosis (cell flow test), and regulated the Nrf2/HO-1/NQO1 signaling pathway. Our data indicated that MRS prevented APAP-induced hepatic injury via anti-inflammatory, antioxidant, anti-ERS, and antiapoptotic properties involving the Nrf2/HO-1/NQO1 signaling pathway.


2015 ◽  
Vol 20 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Benjamin L. Woolbright ◽  
Hartmut Jaeschke

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Noha A. El-Boghdady ◽  
Nourtan F. Abdeltawab ◽  
Mohammed M. Nooh

Paraquat (PQ) is one of the most used herbicide worldwide. Its cytotoxicity is attributed to reactive radical generation. Resveratrol (Res) and montelukast (MK) have anti-inflammatory and antioxidant properties. The protective effects of Res, MK, or their combination against PQ-induced acute liver injury have not been investigated before. Therefore, we explored the protective potential of Res and/or MK against PQ hepatic toxicity in a mouse model. Mice were randomly assigned to five groups: group I served as the normal control and group II received a single dose of PQ (50 mg/kg, i.p.). Groups III, IV, and V received PQ plus oral Res (5 mg/kg/day), MK (10 mg/kg/day), and Res/MK combination, respectively. Res and/or MK reduced PQ-induced liver injury, evidenced by normalization of serum total protein, ALT, and AST. Res and/or MK significantly reversed PQ-induced oxidative stress markers glutathione and malondialdehyde. Res and/or MK significantly reduced PQ-induced inflammation reflected in TNF-α levels. Furthermore, Res and/or MK reversed PQ-induced apoptosis assessed by differential expression of p53, Bax, and Bcl-2. Histopathologic examination supported the biochemical findings. Although Res and MK displayed antioxidative, anti-inflammatory, and antiapoptotic activities, their combination was not always synergistic.


2018 ◽  
Vol 49 (3) ◽  
pp. 1124-1137 ◽  
Author(s):  
Zhiyong Weng ◽  
Yue Chi ◽  
Jing Xie ◽  
Xuefeng Liu ◽  
Jiehua Hu ◽  
...  

Background/Aims: Clinically, biliary obstruction is often accompanied by progressive inflammation. Dehydroandrographolide (DA) possesses anti-inflammatory properties. However, the anti-inflammatory activities of DA in cholestatic liver injury remain unclear. Methods: Mice were administered with DA by intraperitoneal injection after bile duct ligation (BDL) on day 1. Then mice were subjected to an ileocecal vein injection of lipopolysaccharide (LPS). Liver function markers, histology, pro-inflammatory cytokine levels, NF-κB activation and fibrosis formation were evaluated in BDL mice with LPS. LPS binding to primary Kupffer cells was examined by high-content cytometers. Results: DA was shown to greatly lower initially higher than normal levels of alanine aminotransferase (ALT) and total bilirubin (TBIL) in the serum and liver of BDL mice with LPS. DA exerted hepatic protective effects that were also confirmed by prolonged survival of BDL mice with LPS. Liver histopathology showed reduced inflammatory cellular infiltration, bile duct proliferation, and biliary necrosis with DA treatment. Furthermore, DA reduced the expression levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in liver tissue and plasma and showed decreased NF-κB activation in BDL mice with LPS. DA could prevent LPS binding to primary Kupffer cells in the normal liver and BDL mice liver. DA also suppressed LPS-stimulated inflammatory responses by blocking the interaction between LPS and TLR4 in primary Kupffer cells and human LX-2 cells, thereby inhibiting NF-κB activation. Conclusion: DA inhibition of inflammation against liver damage following BDL with LPS may be a promising agent for the treatment of cholestatic liver injury.


2021 ◽  
Vol 166 ◽  
pp. 297-312 ◽  
Author(s):  
Chrishan J.A. Ramachandra ◽  
Shuo Cong ◽  
Xavier Chan ◽  
En Ping Yap ◽  
Fan Yu ◽  
...  

2020 ◽  
Vol 11 (11) ◽  
pp. 9752-9763
Author(s):  
Lihua Li ◽  
Fan Yang ◽  
Rongjun Jia ◽  
Pengfei Yan ◽  
Liman Ma

The present study aims to examine the protective effects and mechanism of a velvet antler polypeptide (VAP) against lithocholic acid (LCA)-induced cholestatic liver injury in mice.


2018 ◽  
Vol 548 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Thaís Gomes de Carvalho ◽  
Vinícius Barreto Garcia ◽  
Aurigena Antunes de Araújo ◽  
Luiz Henrique da Silva Gasparotto ◽  
Heloiza Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document