scholarly journals Anatomical and morphological copper provision indexes in wheat (Triticum aestivum L.)

2013 ◽  
Vol 46 (1) ◽  
pp. 83-97
Author(s):  
Elżbieta Weryszko-Chmielewska

The morphology and anatomy of wheat (<i>Triticum aestivum</i> L.) stems under conditions of copper deficiency were investigated. Copper was supplied at 0, 5 and 125 mg per Mitscherlich pot. The lignification of tissues in plants from field experiments (0; 5; 10; 20 mg Cu/ha) was also studied. Significant changes in stem and leaf morphology and anatomy were found along inhibition of inflorescence and flower development. The anthers produces sterile and deformed pollen grains. The diminished stability of stems was caused by the following anatomical changes: considerable reduction of steam diameter and culm wall thickness and decreased numbers and dimensions of sclerenchyma and parenchyma cells and layers. In addition, the size of vascular bundles and the diameter of xylem vessels were decreased and the sclerenchyma sheath around the vascular bundles was reduced. The epidermis and sclerenchyma cells had thinner walls. The absence of lignification of cells walls was observed most frequently in the peripheral tissues (epidermis, sclerenchyma and parenchyma). It was demonstrated that it was possible to histochemically determine the degree of stem lignification in the early phases of wheat development.

1972 ◽  
Vol 20 (1) ◽  
pp. 49 ◽  
Author(s):  
JW Patrick

The courses of the various vascular bundles in the nodes of the main tiller of Triticum aestivum L. have been reconstructed from anatomical observations of con- secutive serial transverse sections. Of the bundles entering a node (n) from its attached leaf, the first-formed and largest, the median, passes directly through the node to the second node below (n-2), where it bifurcates and fuses with other strands. These continue to node n- 3 before fusing completely with the nodal plexus. The next six bundles to form (laterals) establish some links with bundles from higher leaves in the node of entry, much more extensive connections in node n- 1, and fuse completely with the nodal plexus in node n-2. The next four lateral bundles to differentiate are more extensively linked in node n and fuse completely with the nodal plexus in node n - I . The remaining 16-20 bundles from the leaf (intermediates) follow much the same course but develop more extensive connections with other bundles. The extensive plexus which develops in each node ensures vascular connections between most bundles. The significance of these in transport is briefly discussed.


2020 ◽  
Vol 43 (11) ◽  
pp. 1617-1626
Author(s):  
Amlal Fouad ◽  
Drissi Saad ◽  
Makroum Kacem ◽  
Maataoui Abdelwahed ◽  
Dhassi Khalid ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 275
Author(s):  
Leszek Rachoń ◽  
Aneta Bobryk-Mamczarz ◽  
Anna Kiełtyka-Dadasiewicz

The objective of this study is to compare the yields and qualities of the hulled wheats emmer (Triticum dicoccum Schübl.) and spelt (Triticum aestivum L. ssp. spelta) with the commonly cultivated naked wheats common wheat (Triticum aestivum L. ssp. vulgare) and durum wheat (Triticum durum Desf.). Three years of field experiments were carried out from 2015 to 2017 in the Lubelskie province (Poland) on rendzina soils. The experimental results indicate that the hulled wheats, even when cultivated with advanced technology, produced lower yields compared to the common and durum wheats (reduced by 30–56%). In spite of their lower yields, emmer and spelt retained appropriate technological parameters. Higher ash, protein, and wet gluten yields were characteristic of the hulled wheats; however, the high gluten spread of emmer (13.3 mm) may limit its application as a raw material in some food processes. In summary, hulled wheat species can be recommended for modern agricultural production as an alternative source of high-quality materials for the agricultural and food industries.


1989 ◽  
Vol 69 (4) ◽  
pp. 1235-1244 ◽  
Author(s):  
J. T. O’DONOVAN ◽  
K. J. KIRKLAND ◽  
A. K. SHARMA

The effects of different densities of volunteer wheat (Triticum aestivum L. ’Neepawa’) on the yield of canola (Brassica campestris L. ’Tobin’ and B. napus L. ’Westar’), and the seed yield of the volunteer wheat were determined in field experiments conducted at Vegreville, Alberta and Scott, Saskatchewan. Hyperbolic models provided a good fit to the data in most instances and indicated that volunteer wheat can severely reduce canola yield. A model pooled over locations and years indicated that volunteer wheat populations as low as one plant m−2 reduced canola yield by approximately 1%. Yield loss predictions from the models were used to determine the economics of volunteer wheat control with herbicides. In some cases, revenue losses due to reduced canola yield could be alleviated when the value of the volunteer wheat was considered.Key words: Volunteer wheat, canola, rectangular hyperbola, multiple regression, economic threshold, volunteer cereals


1986 ◽  
Vol 66 (2) ◽  
pp. 281-289 ◽  
Author(s):  
J. B. BOLE ◽  
S. DUBETZ

Field experiments were conducted over four growing seasons in southern Alberta to develop improved irrigation and nitrogen fertilizer recommendations for soft white spring wheat (Triticum aestivum L.). Irrigation to provide available water in the root zone to maturity maintained acceptably low protein content of soft wheat fertilizer-N plus soil test NO3-N levels from 140 to 208 kg ha−1. Nitrogen fertilizer increased protein content in all 4 yr of the study and increased yields each year except 1981 when the soil contained a high level of NO3-N. The protein content was not raised above the level considered acceptable for the domestic Canadian market (10.5%, moist basis) unless fertilizer rates in excess of the economic optimum level were applied. Fertilizer-N response curves were developed for each cultivar, irrigation treatment, and year combination. These were used to show the relationship between yield and the level of fertilizer N plus soil NO3-N which would result in economic optimum yields of soft white spring wheat of acceptable protein content. The results suggest N rates can be increased about 30 kg ha−1 for each t ha−1 increase in the target yield of the producer.Key words: Wheat (soft white spring), Triticum aestivum L., irrigation, nitrogen fertilizer, protein, target yield


1997 ◽  
Vol 48 (6) ◽  
pp. 855 ◽  
Author(s):  
D. E. Elliott ◽  
D. J. Reuter ◽  
G. D. Reddy ◽  
R. J. Abbott

The effects of phosphorus (P) deficiency on plant symptoms, yield, and components of yield of wheat (Triticum aestivum L. cv. Halberd), P uptake, and the distribution of dry weight within plants of variable P status were examined in 2 glasshouse and 5 field experiments. Apart from stunted growth and depressed tillering, the symptoms of acute P deficiency, most noticeable on older leaf blades, were equivocal; they were not always observed on acutely deficient plants and were absent on moderately deficient plants. In glasshouse experiments, the leaves of acutely deficient plants were spindly, erect, and dark green, whereas in field experiments, the leaves were pale green. In acutely P-stressed plants, leaf senescence, phasic development, and anthesis were delayed. The disorder restricted tiller development and therefore the rate of appearance and the number of leaves per plant. It depressed grain yield principally by reducing the number of fertile tillers. Severe P deficiency depressed shoot growth within 15 days of sowing and ultimately reduced plant height, root mass, and grain yield. In all experiments, shoot yield responses to applied P increased progressively until stem elongation (Zadoks Scale 30) and changed little thereafter. As a result, the external requirement for P (i.e. P level required for 90% maximum growth) increased with time during vegetative development in most experiments. Severe P deficiency also affected the distribution of dry matter between the roots and shoots and between the leaf blades and conducting tissues (sheaths and stems). Both of these responses intensified with advancing plant age. Treatment differences in P uptake in shoots also occurred early in growth and persisted until grain maturity. The partitioning of P between roots and shoots favoured P uptake or retention in the roots of P-deficient plants. Under conditions of acute and moderate P stress, the resources of the wheat plant appear to be directed towards maintaining root growth (at least initially), limiting and delaying shoot proliferation, and maximising the leaf : stem ratio. These regulations appear circumstantially to be adaptive mechanisms for conserving suffiient P to ensure the survival of at least 1 weak, but fertile, tiller on each plant.


1984 ◽  
Vol 64 (1) ◽  
pp. 25-30 ◽  
Author(s):  
J. A. IVANY ◽  
H. G. NASS

In field experiments at Charlottetown, P.E.I., five herbicides evaluated at two rates of application on eight spring wheat (Triticum aestivum L.) cultivars showed no effect on dry plant weight 20 days after treatment. Herbicide treatment with dicamba resulted in a greater number of deformed heads per plot compared with the untreated in 1980 and with all herbicides except diclofop-methyl in 1981. More deformed heads occurred with dicamba and the 2,4-D/mecoprop/dicamba mixture at the higher rate of application in 1981 than with the other herbicides and the lower rate of application. All cultivars had more deformed heads than the untreated control when treated with 2,4-D, dicamba and the 2,4-D/mecoprop/dicamba mixture in 1981. Neepawa and Dundas had more deformed heads than the other cultivars when treated with MCPA. Head deformation by herbicide treatment had no adverse effect on grain yield in this study.Key words: Spring wheat cultivars, herbicides, head deformation, 2,4-D, MCPA, dicamba, diclofop-methyl


1990 ◽  
Vol 70 (1) ◽  
pp. 295-298 ◽  
Author(s):  
R. J. BAKER

Emergence, maturity, and yield of four semi-dwarf and five normal height spring wheat (Triticum aestivum L.) genotypes were evaluated in 10 replicated field experiments at Saskatoon in 1985–1987. Although significant crossover interactions were observed, semi-dwarf and normal height genotypes responded similarly to date of seeding.Key words: Triticum aestivum, seeding date, crossover interaction, wheat (spring)


2012 ◽  
Vol 58 (No. 1) ◽  
pp. 15-21 ◽  
Author(s):  
J. Lachman ◽  
M. Orsák ◽  
V. Pivec ◽  
K. Jírů

Wheat and cereals generally are largely consumed worldwide and contribute significantly to antioxidant intake with beneficial health effects. In the precise two-year field experiments, two varieties of wheat einkorn, two varieties of emmer wheat and three varieties of spring wheat in 2008 and moreover further two spring wheat varieties, three einkorn varieties and three emmer wheat varieties in 2009, were evaluated for antioxidant activity (AOA) using 2,2-diphenyl-1-picrylhydrazyl assay (DPPH). The higher grain AOA was observed in emmer (215.4&ndash;257.6 mg Trolox/kg DM) and einkorn (149.8&ndash;255.8 mg Trolox/kg DM) varieties, while in spring varieties the AOA ranged between 195.8 and 210.0 mg Trolox/kg DM. A linear correlation between total polyphenols and AOA was determined (r = 0.739, P &le; 0.05). Emmer and einkorn wheat varieties showed high AOA and can be promising sources of these nutritionally appreciated grain constituents. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document