scholarly journals Effects of Chelidonium majus and Ascophyllum nodosum Extracts on Growth and Photosynthesis of Soybean

2020 ◽  
Vol 73 (1) ◽  
Author(s):  
Juhie Joshi-Paneri ◽  
Guy Chamberland ◽  
Danielle Donnelly

Herbal extracts used in agriculture are formulated from plants (or other organisms) as alternatives to synthetic chemicals that could have adverse effects on growers, consumers, or the environment. In this study, the effects of two herbal extracts on soybean were assessed: <em>Chelidonium majus</em> (C7: Celext 07) and <em>Ascophyllum nodosum</em> (ST: Stimulagro). A standardized approach for germinating seeds and monitoring early seedling growth for 15 days (SOP-Soybean) was used to evaluate the effects of these extracts. Growth characteristics, chlorophyll content, and photosynthetic rate were measured on the fifteenth day after sowing (DAS). A combination of <em>C. majus</em> and <em>A. nodosum</em> (C7+ST), both 1 g L<sup>−1</sup>, was the most beneficial treatment and significantly increased shoot height (13.2%), dry mass (10.7%), and photosynthetic rate (20.3%). In a separate experiment, foliar application of the same compounds was performed on the tenth and twentieth DAS, with sampling on the thirtieth DAS. Foliar applications with 1 g L<sup>−1</sup> of <em>A. nodosum</em> (ST) significantly enhanced the dry mass (23.5%), and the photosynthetic rate was increased even at 10 days after application (22.5%). Therefore, seedling exposure to <em>C. majus</em> (C7) and <em>A. nodosum</em> (ST) and foliar applications of <em>A. nodosum</em> (ST) stimulated the growth and development of soybean. These natural compounds seem to have the potential to act as growth stimulants for soybean and should be tested for their capacity to improve field growth and yield.

2019 ◽  
Vol 25 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Patrick Luan Ferreira dos Santos ◽  
Alessandro Reinaldo Zabotto ◽  
Half Weinberg Corrêa Jordão ◽  
Roberto Lyra Villas Boas ◽  
Fernando Broetto ◽  
...  

Abstract Seaweed extracts are employed as biostimulants due to their beneficial effects on crop growth and yield. Ascophyllum nodosum seaweed extract aid to improve seedling growth and development, and decrease seedlings production costs; however, the correct concentration must be used in order to maximize the biostimulant effects. Consequently, this study aimed to analyze the effects of different concentrations of a seaweed-based (Ascophyllum nodosum) biostimulant on ornamental sunflower seed germination and seedling growth. Seeds of ornamental sunflower cv. “Sol Pleno” were sown in polyethylene trays containing commercial substrate. The treatments consisted of dairy spraying 60 mL of the solutions 0 (control), 5, 10 or 15 mL L-1 biostimulant on substrate. The experimental design was completely randomized with 4 treatments (concentrations of biostimulant) and 4 replicates (10 seeds replicate-1). The evaluated variables were percentage, index and time averages of germination, seedling height, fresh and dry mass of shoot and roots, and root system morphology (WinRhizo). The increase of the biostimulant concentration enhances seed germination and seedlings development. The concentration 15 mL L-1 biostimulant showed the best results for percentage and index of germination and the lowest mean germination time and increase plant height and fresh and dry mass of shoots in relation to the control treatment. Accordingly, 15 mL L-1 biostimulant (Ascophyllum nodosum) is recommended for ornamental sunflower “Sol Pleno” seed germination and seedlings growth.


2014 ◽  
Vol 9 (4) ◽  
pp. 396-409 ◽  
Author(s):  
Janusz Podleśny ◽  
Jerzy Wielbo ◽  
Anna Podleśna ◽  
Dominika Kidaj

AbstractRhizobial lipochitooligosacharides (Nod factors) influence the development of legume roots, including growth stimulation, nodule induction and root hair curling. However, their effect on the green parts of plants is less known, therefore we evaluated seed and foliar application of an extract containing Nod factors on pea growth and yield. Pea plants were examined from emergence to full maturity, including growth dynamics and morphological (nodule number and weight, the quantity and surface area of leaves) or physiological (photosynthesis and transpiration intensity, chlorophyll and nitrogen content) parameters. The foliar application Nod factor extract, or seed dressing followed by foliar application, resulted in the best outcomes. The number and weight of root nodules, the chlorophyll content in leaves, and the intensity of net photosynthesis were all elevated. As a consequence of Nod factor treatment, the dynamics of dry mass accumulation of pea organs were improved and the pod number was increased. A significant increase in pea yield was observed after Nod factor application. Increase of nodule and pod numbers and improved growth of roots appear to be amongst the beneficial effects of Nod factor extract on the activation of secondary plant meristems.


2017 ◽  
Vol 7 (4) ◽  
pp. 513 ◽  
Author(s):  
Geovani Soares de Lima ◽  
João Batista dos Santos ◽  
Lauriane Almeida dos Anjos Soares ◽  
Hans Raj Gheyi ◽  
Reginaldo Gomes Nobre ◽  
...  

It is proposed in this study the evaluation of the growth and yield of ‘All Big’ sweet pepper under foliar application of proline and irrigation with saline water. The research was conducted in pots adapted as drainage lisimeters under greenhouse conditions, using an Eutrophic Entisol with sandy-loam texture in the municipality of Campina Grande, PB, Brazil. A randomized block design was used testing two levels of electrical conductivity of irrigation water - ECw (0.6 and 3.0 dS m-1) associated to four proline levels (0, 10, 20 and 30 mmol L-1). Irrigation with water with ECw= 3.0 dS m-1 negatively affected the ‘All Big’pepper growth and the stem dry mass, being the most sensitive variable; the highest values for fresh mass, number and average weight of pepper fruits were obtained when water with ECw=0.6 dS m-1 was used, with proline doses of 12.17 and 0 mmol L-1, respectively; increasing proline doses did not mitigate the deleterious effects caused by irrigation water salinity of 3.0 dS m-1 on growth and yield of ‘All Big ‘ sweet pepper.


2013 ◽  
Vol 42 (1) ◽  
pp. 179-183 ◽  
Author(s):  
MMA Mondal ◽  
MA Malek ◽  
AB Puteh ◽  
MR Ismail

Plant parameters such as plant height, branch and leaf number/plant, leaf area/plant, total dry mass/plant, photosynthesis, harvest index, chlorophyll, nitrate reductase and number of pods/plant increased significantly with the increasing concentration of chitosan up to 50 ppm. It resulted the highest seed yield in mungbean. DOI: http://dx.doi.org/10.3329/bjb.v42i1.15910 Bangladesh J. Bot. 42(1): 179-183, 2013 (June)


Author(s):  
Hayyawi W.A. Al-juthery ◽  
Estabraq Hilal Obaid Al-Maamouri

Investigating the effect of urea and nano-nitrogen fertigation and foliar application of nano B and Mo on growth and yield of potato Solanum tuberosum L. [Rivera-A]. The study was conducted in a private farm located in the Al-Taleah area - Babylon governorate. The experiment consisted of (12) treatments consisting of separated fertigation of nano nitrogen (25% N) and urea (46% N), single treatments of leaf spraying of nano Mo (5%), Nano B (9%), nano-binary combinations (Mo+B) and (U+ Nano Mo), (U+Nano B), Nano (N+Mo), Nano (N+B), and tricombination treatments of (U+Mo+B), Nano (N+Mo+B) additional to the control treatment. Randomize Complete Block Design (RCBD) and one way simple experiment with three replicates. Fertilizers were applied at levels of 40 liters h-1 of Nano-N fertilizer (25% N) and 300 kg h-1 urea fertilizer (46% N). They were sprayed early in the morning after (40) days after planting four times. Two weeks is the period between an application and another according to the recommendation of (1) kg  h-1 nano-fertilizer of (B) and (500) g h-1 of  Mo. Fertilizers were injected and sprayed at (10, 20, 30 and 40)% of the total amount of the fertilizer were applied as the first, second, third and fourth applications, respectively. Some growth traits were tested including the chlorophyll content in the leaves, the total dry vegetative yild, the soft tubers yield, and the biological yield, proteins and ascorbic acid yield compared to the control (spray water only). The results of the Duncan test showed a significant increase in most of the studied traits of nano-tricombination (N+Mo+B) in the fresh tubers yield,  dry vegetative yield  , the biological yield, starch yield ,the total protein and ascorbic yield (37.53, 1.799, 8.138,4.152 , 481.3and 653.8 meg ha-1) respectively .compare to control (21.58 , 0.890, 4.463  ,2.323 , 366.1 and 215.5 meg ha-1) respectively.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 420 ◽  
Author(s):  
Shashidhar K. Shankarappa ◽  
Samuel J. Muniyandi ◽  
Ajay B. Chandrashekar ◽  
Amit K. Singh ◽  
Premaradhya Nagabhushanaradhya ◽  
...  

Lentil (Lens culinaris) is an important winter season annual legume crop known for its highly valued seed in human and animal nutrition owing to its high lysine and tryptophan content. Shortage of water during the crop growth period has become the major impediment for cultivation of pulses in rice fallow in particular. Under such conditions, the application of hydrogel can be a potential alternative to improve photosynthetic efficiency, assimilate partitioning, and increase growth and yield. A field experiment was conducted from November to February during 2015–16 to 2017–18 on clay loam soil that was medium in fertility and acidic in reaction (pH 5.4) at Central Agricultural University, Imphal, Manipur. The experiment was laid out in split plot design with three replications. There were three hydrogel levels in total in the main plot and foliar nutrition with five different nutrient sprays in sub-plots, together comprising 15 treatment combinations. The data pooled over three years, 2015–2018, revealed that application of hydrogel at 5 kg/ha before sowing recorded a significantly greater number of pods per plant (38.0) and seed yield (1032.1 kg/ha) over the control. Foliar application of nutrients over flower initiation and pod development had a positive effect on increasing the number of pods per plant eventually enhanced the seed yield of lentil. Foliar application of either 0.5% NPK or salicylic acid 75 ppm spray at flower initiation and pod development stages recorded significantly more pods per plant over other nutrient treatments. Further, the yield attributed improved because of elevated growth in plant. Significantly maximum seed yield (956 kg/ha) recorded in the NPK spray of 0.5% remained on par with salicylic acid 75 ppm (939 kg/ha) over the rest of the treatments.


Sign in / Sign up

Export Citation Format

Share Document