scholarly journals Monographella nivalis on the leof sheath of winter Triticale

2014 ◽  
Vol 22 (2) ◽  
pp. 203-204
Author(s):  
Barbara Łacicowa

Monographella nivatis (Schaffnit) Mülier was found in 1983. Punctiform perithecia were scattered irregularly on the bleached tissues of the sheaths at the beginning of July. The ascospores were mostly mono- or bicellular. The cultures from the ascospores were producing typical conidia of the fungus <i>Fusarium nivale</i> (Fr.) Ces. in exposure to light were successfuly cultivated on leafs of the wheat agar.

Author(s):  
I.N. Voronchikhina ◽  
◽  
A.G. Marenkova ◽  
V. S. Rubets ◽  
V. V. Pylnev

The results of elements development of varietal agrotechnics of a new high-potential line 238h of winter triticale presented. It was identified that under the conditions of 2020 the most cost effective fertilizer system is an early spring application of NPK (S) (15-15-15 (10)) at a dose of 200kg/ha. The profitability level of this fertilizer was 88,9%.


2018 ◽  
Vol 1 (72) ◽  
pp. 184-189
Author(s):  
Victor Kovtunenko ◽  
◽  
Vladimir Panchenko ◽  
Alexei Kalmus ◽  
◽  
...  
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 512
Author(s):  
Alemayehu Worku ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

The objective of this study was to evaluate the aroma profile, microbial and chemical quality of winter cereals (triticale, oats, barley and wheat) and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four commercial mixtures (mixture A (40% of two cultivars of winter triticale + 30% of two cultivars of winter oats + 20% of winter barley + 10% of winter wheat), mixture B (50% of two cultivars of winter triticale + 40% of winter barley + 10% of winter wheat), mixture C (55% of three types of Italian ryegrass + 45% of two cultivars of winter oat), mixture D (40% of three types of Italian ryegrass + 30% of two cultivars of winter oat + 15% of two cultivars of winter triticale + 10% of winter barley + 5% of winter wheat)) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Mixture C had higher (p < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. In general, the electronic nose (EN) results revealed that the Italian ryegrass and winter cereal mixtures (mixture D) had better aroma profile as compared to winter cereal mixtures (mixture A and B). However, the cereal mixtures (mixture A and B) had better aroma quality than mixture C silage. Otherwise, the EN technology is suitable in finding off odor compounds of ensiled forages.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 527
Author(s):  
Andrzej Wysokinski ◽  
Izabela Lozak ◽  
Beata Kuziemska

Atmospheric nitrogen biologically reduced in legumes root nodule and accumulated in their postharvest residues may be of great importance as a source of this macronutrient for succeeding crops. The aim of the study was to determine nitrogen uptake by winter triticale from pea postharvest residues, including N fixed from atmosphere, using in the study fertilizer enriched with the 15N isotope. Triticale was grown without nitrogen fertilization at sites where the forecrops had been two pea cultivars (multi-purpose and field pea) and, for comparison, spring barley. The triticale crop succeeding pea took up more nitrogen from the soil (59.1%) and less from the residues of the forecrop (41.1%). The corresponding values where the forecrop was barley were 92.1% and 7.9%. In the triticale, the percentage of nitrogen derived from the atmosphere, introduced into the soil with pea crop residues amounted to 23.8%. The amounts of nitrogen derived from all sources in the entire biomass of triticale plants grown after harvesting of pea were similar for both pea cultivars. The cereal took up more nitrogen from all sources, when the soil on which the experiment was conducted had higher content of carbon and nitrogen and a greater amount of N was introduced with the pea residues. Nitrogen from pea residues had high availability for winter triticale as a succeeding crop cultivated on sandy soils.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 484
Author(s):  
Andrew M. Bierer ◽  
April B. Leytem ◽  
Robert S. Dungan ◽  
Amber D. Moore ◽  
David L. Bjorneberg

Insufficient characterization of soil organic carbon (SOC) dynamics in semi-arid climates contributes uncertainty to SOC sequestration estimates. This study estimated changes in SOC (0–30 cm depth) due to variations in manure management, tillage regime, winter cover crop, and crop rotation in southern Idaho (USA). Empirical data were used to drive the Denitrification Decomposition (DNDC) model in a “default” and calibrated capacity and forecast SOC levels until 2050. Empirical data indicates: (i) no effect (p = 0.51) of winter triticale on SOC after 3 years; (ii) SOC accumulation (0.6 ± 0.5 Mg ha–1 year–1) under a rotation of corn-barley-alfalfax3 and no change (p = 0.905) in a rotation of wheat-potato-barley-sugarbeet; (iii) manure applied annually at rate 1X is not significantly different (p = 0.75) from biennial application at rate 2X; and (iv) no significant effect of manure application timing (p = 0.41, fall vs. spring). The DNDC model simulated empirical SOC and biomass C measurements adequately in a default capacity, yet specific issues were encountered. By 2050, model forecasting suggested: (i) triticale cover resulted in SOC accrual (0.05–0.27 Mg ha–1 year–1); (ii) when manure is applied, conventional tillage regimes are favored; and (iii) manure applied treatments accrue SOC suggesting a quadratic relationship (all R2 > 0.85 and all p < 0.0001), yet saturation behavior was not realized when extending the simulation to 2100. It is possible that under very large C inputs that C sequestration is favored by DNDC which may influence “NetZero” C initiatives.


2015 ◽  
Vol 41 (4) ◽  
pp. 195-198
Author(s):  
A. R. Garifzyanov ◽  
N. N. Zhukov ◽  
V. V. Ivanishchev ◽  
A. A. Kosobryukhov

Author(s):  
Cezary Sempruch ◽  
Bogumił Leszczyński ◽  
Grzegorz Chrzanowski ◽  
Anna Filipczuk ◽  
Paweł Czerniewicz ◽  
...  

1996 ◽  
Vol 76 (2) ◽  
pp. 251-257 ◽  
Author(s):  
V. S. Baron ◽  
E. A. de St Remy ◽  
D. F. Salmon ◽  
A. C. Dick

Spring planted mixtures of spring and winter cereals maximize dry matter yield and provide fall pasture by regrowth of the winter cereal. However, delay of initial harvest may reduce the winter cereal component and therefore subsequent regrowth yield. Research was conducted at Lacombe, Alberta to investigate the effect of time of initial cut (stage), winter cereal species (species) and cropping system (monocrop and mixture) on winter cereal shoot weight, leaf carbon exchange efficiency and shoot morphology. These parameters may be related to adaptation of winter cereals to growth and survival in the mixture. Winter cereal plants were grown in pails embedded in monocrop plots of fall rye (Secale cereale L.), winter triticale (X Triticosecale Wittmack) and winter wheat (Triticum aestivum L.) and in binary mixtures with Leduc barley (Hordeum vulgare L.). The plants were removed when the barley reached the boot (B), heads emerged (H), H + 2, H + 4 and H + 6 wk stages. Shoot weight was generally smaller in the mixture than in the monocrop and wheat was reduced more than fall rye and triticale in the mixture compared to the monocrop. Dark respiration rate (r = −0.54) and carbon exchange (r = 0.36) under low light intensity were correlated (P < 0.05) to shoot size in the mixture. Fall rye and winter triticale had lower dark respiration rates than winter wheat. Leaf area index (LAI) was closely correlated (r = 0.83 and 0.84) with shoot weight in both the mixture and monocrop. While species failed to exhibit clear cut differences for LAI, fall rye and winter triticale were reduced less than winter wheat in the mixture relative to the monocrop. Stage was the dominant factor affecting winter cereal growth in both cropping systems, but fall rye and triticale exhibited superior morphological features, and their carbon exchange responses to light were more efficient than wheat, which should allow them to be sustained longer under the shaded conditions of a mixture. Key words: Delayed harvest, shade, spring and winter cereal mixtures, adaptation, carbon exchange, respiration


Mycologia ◽  
1991 ◽  
Vol 83 (3) ◽  
pp. 367 ◽  
Author(s):  
A. Logrieco ◽  
R. F. Vesonder ◽  
S. W. Peterson ◽  
A. Bottalico
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document