scholarly journals Nitrate reductase activity and yield of dry mass and protein content in cucumber seedlings supplied with nitrates and ammonium

2015 ◽  
Vol 48 (3) ◽  
pp. 465-471 ◽  
Author(s):  
J. Buczek ◽  
M. Burzyński

The presence of NH<sub>4</sub><sup>+</sup> ions in a nutrient solution containing NH<sub>4</sub>NO<sub>3</sub> with the K+ ions removed, caused an inhibition of nitrate reductase (NR) activity in cucumber leaves. The lack of K<sup>+</sup> in a NaNO<sub>3</sub> medium also decreased the NR activity. Addition of K<sup>+</sup> to these media suppressed the inhibitory effect of NH<sub>4</sub><sup>+</sup> and enhanced the NR activity in the leaves of plants growing in NaNO<sub>3</sub> nutrient solution. The results suggest that K<sup>+</sup> is essential for NO<sub>3</sub><sup>-</sup> reduction, Na<sup>+</sup> is less effective in this process, whereas NH<sub>4</sub><sup>+</sup> ions markedly inhibit NO<sub>3</sub><sup>-</sup> reduction. The protein content and increment of dry mass of cucumber plants grown 10 days with NH<sub>4</sub>-N as the sole source of nitrogen was significantly lower as compared with NO<sub>3</sub>-N supplied plants feed with plants feed with both forms of mineral nitrogen (NH<sub>4</sub>NO<sub>3</sub>). The results show that cucumber prefers the nitrates, although it can utilize the ammonium form of nitrogen.

2015 ◽  
Vol 46 (2) ◽  
pp. 275-283
Author(s):  
A. Suder-Moraw ◽  
J. Buczek

A 3:30 Ca:Mg ratio in the nutrient solution produces in tomato seedlings symptoms of Ca<sup>2+</sup> deficit owing to excessive accumulation of Mg<sup>2+</sup> ions and the depressed Ca<sup>2+</sup> accumulation. As a result of this a decrease in dry weight increment and protein content is observed together with inhibition of nitrate reductase activity. A doubled Ca<sup>2+</sup> dose in the nutrient solution, that is a change in the Ca:Mg ratio to 6:30 abolishes the external symptoms of Ca<sup>2+</sup> deficit and reduces Mg<sup>2+</sup> accumulation, that of Ca<sup>2+</sup> ions remaining unchanged. At the same time an enhanced activity of nitrate reductase appears, reaching values close to those in control plants. Tomato seedlings grown on a 3-fold increased Ca<sup>2+</sup> dose (Ca:Mg = 9:30) did not differ at all from the control ones. An in-crease in calcium concentration in the nutrient solution, the high magnesium dose remaining unchanged, causes enhanced K<sup>+</sup> accumulation, and this may affect nitrate absorption and reduction. It would seem that Ca<sup>2+</sup> deficit in plant tissues induced by excessive Mg<sup>2+</sup> accumulation with unsuitable Ca:Mg ratio in the nutrient solution in cause of disorders in NO<sub>3</sub> nitrogen assimilation.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 772
Author(s):  
Zongkui Chen ◽  
Hongyun Gao ◽  
Fei Hou ◽  
Aziz Khan ◽  
Honghai Luo

The changing climatic conditions are causing erratic rains and frequent episodes of moisture stress; these impose a great challenge to cotton productivity by negatively affecting plant physiological, biochemical and molecular processes. This situation requires an efficient management of water-nutrient to achieve optimal crop production. Wise use of water-nutrient in cotton production and improved water use-efficiency may help to produce more crop per drop. We hypothesized that the application of nitrogen into deep soil layers can improve water-nitrogen productivity by promoting root growth and functional attributes of cotton crop. To test this hypothesis, a two-year pot experiment under field conditions was conducted to explore the effects of two irrigation levels (i.e., pre-sowing irrigation (W80) and no pre-sowing irrigation (W0)) combined with different fertilization methods (i.e., surface application (F10) and deep application (F30)) on soil water content, soil available nitrogen, roots morpho-physiological attributes, dry mass and water-nitrogen productivity of cotton. W80 treatment increased root length by 3.1%–17.5% in the 0–40 cm soil layer compared with W0. W80 had 11.3%–52.9% higher root nitrate reductase activity in the 10–30 cm soil layer and 18.8%–67.9% in the 60–80 cm soil layer compared with W0. The W80F10 resulted in 4.3%–44.1% greater root nitrate reductase activity compared with other treatments in the 0–30 cm soil layer at 54–84 days after emergence. Water-nitrogen productivity was positively associated with dry mass, water consumption, root length and root nitrate reductase activity. Our data highlighted that pre-sowing irrigation coupled with basal surface fertilization is a promising option in terms of improved cotton root growth. Functioning in the surface soil profile led to a higher reproductive organ biomass production and water-nitrogen productivity.


1989 ◽  
Vol 69 (3) ◽  
pp. 919-923 ◽  
Author(s):  
A. SAUVESTY ◽  
G. GENDRON

The influence of field climate on nitrate reductase activity (NR) and development was studied in six oat varieties. Of the monitored environmental factors, only temperature had a significant influence; a temperature increase accelerated plant development and increased NR. It was found that a measure of NR activity as early as the coleoptile stage of development indicated optimal environmental conditions for reduction of nitrate nitrogen in a given genotype.Key words: Nitrate reductase activity, development, climate, oat


2015 ◽  
Vol 42 (3) ◽  
pp. 431-439 ◽  
Author(s):  
J. S. Knypl

Cotyledons were excised from 5-day old etiolated cucumber seedlings and .grown for 24 or 48 h in solutions of plant growth retardants: AMO-1618,B-Nine, CCC and phosfon D, supplemented with KNO<sub>3</sub> (10<sup>-2</sup>M) in light. Nitrate reductase (NR) activity was determined <i>in vivo</i>. CCC and Phosfon D at high concentrations had no effect on nitrate reductase activity in 24 h tests. CCC at 5xl0<sup>-2</sup> M enhanced NR activity in longer 48 h tests; Phosfon D was inhibitory in that case. AMO-1618 markedly decreased NR activity. B-Nine strikingly enhanced NR activity in KNO<sub>3</sub> induced cytoledons; the effect was positively correlated with the concentration of B-Nine. Ali the compounds inhibited chlorophyll synthesis.


2019 ◽  
pp. 441-448 ◽  
Author(s):  
Eleonora Sergeyevna Davidyants

The effect of seed treatment with solutions of a purified amount of triterpene glycosides (PATG) containing, as major components, oleanolic acid glycosides – sylphiosides B, C, E, G, and extract (E) enriched with sylphiosides, from Silphium perfoliatum L. (Asteraceae) leaves on growth parameters and nitrate reductase activity (NR, EC 1.6.6.1) of 7-day winter wheat plants (Tritium aestivum L.) was studied. It was shown that, seed treatment with PATG solutions in concentrations of 0.0005 and 0.001% and E in concentrations of 0.2 and 0.4% caused an increase in the length of roots, shoots, wet and dry weight of seedlings compared to the control. The stimulating effect of these concentrations of PATG and E on the total nitrate reductase activity of the roots and leaves of seedlings has been established, and an increase in the stimulating effect of preparations on the activity NR оf against the background of substrate activation of the enzyme potassium nitrate (KNO3) was observed. The greatest increase in the total NR activity of roots and leaves of winter wheat plants was observed when PATG acted at a concentration of 0.001% and E – at a concentration of 0.4%, which amounted respectively 122 and 116%, when adding 1 ml of 50 mM KNO3 solution into the growing medium of plants – 141 and 137% relative to the control. The stimulating effect of exogenous triterpene glycosides on NR activity has been established for the first time. The obtained data allow to theoretically substantiate the possibility of practical use of triterpene glycosides and preparations based on them for the regulation of growth and nitrogen metabolism of plants.


2014 ◽  
Vol 55 (4) ◽  
pp. 589-600 ◽  
Author(s):  
Józef Buczek ◽  
Jacek Borkowski ◽  
Irena Jarzyńska

At concentrations of 25 and 5 µM, simazine inhibited nitrate reductase activity in wheat and cucumber roots, respectively. It also lowered the content of soluble sugars and decreased the activities of NADH malate dehydrogenase and NADP<sup>+</sup> glucose-6-phosphate dehydrogenase. The inclusion of 50 mM glucose into the medium partially reversed the inhibitory effect of simazine on the activity of nitrate reductase in cucumber roots and slightly increased the activity of this enzyme in wheat roots These results suggest a complex influence of the herbicide on the activity of nitrate reductase: simazine lowers the level of soluble sugars in roots and decreases the activity of the dehydrogenases supplying the reduced nucleotides indispensable for reduction of nitrates.


1972 ◽  
Vol 20 (3) ◽  
pp. 193-198
Author(s):  
F. van Egmond ◽  
H. Breteler

Diploid sugar beet was grown in controlled environment at 25/17 deg C in 14-h photoperiods in well aerated, regularly changed nutrient solution containing 6 meq NO3/l. When 6 leaves had been expanded, the total carboxylate content of the oldest leaf (leaf 1) was found to be 5836 meq/kg DM, while that of leaf 6 was only 2312 meq/kg; the difference was mainly due to oxalate content, which was 5236 meq/kg in leaf 1 and 1744 meq/kg in leaf 6. Nitrate-N content was about 50% higher in leaf 1 than in leaf 4. Nitrate-reductase activity fell to very low values as leaves aged. Experiments in which young and old leaf material was mixed, or oxalate at 0-4000 meq/kg DM was added to leaf samples, showed that oxalate had no substantial effect on nitrate-reductase activity. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document