scholarly journals Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants

2014 ◽  
Vol 55 (2) ◽  
pp. 291-304 ◽  
Author(s):  
Tadeusz Baszyński

The actual opinions concerning the role of Cd<sup>2+</sup> in inhibition of photosynthesis have been reviewed. The light phase of photosynthesis, particularly the site of Cd<sup>2+</sup> action in the photosynthetic transport chain has been given the greatest attention. Cd<sup>2+</sup>-induced inhibition of Photosystem II activity as the result of thylakoid membrane degradation has been discussed. The present studies on Cd<sup>2+</sup>-inhibited dark reactions occurring in stroma has been analysed. Attention has been drawn to the fact that the results of studies in vitro are not always compatible with the changes found in the photosynthetic apparatus of higher plants growing in a Cd2 containing medium.

2021 ◽  
Vol 22 (8) ◽  
pp. 4021
Author(s):  
Monika Kula-Maximenko ◽  
Kamil Jan Zieliński ◽  
Ireneusz Ślesak

Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Rosiane Cipriano ◽  
João Paulo Rodrigues Martins ◽  
Luiz Carlos de Almeida Rodrigues ◽  
Antelmo Ralph Falqueto ◽  
Andreia Barcelos Passos Lima Gontijo

Abstract In vitro cultivation is a technique with wide application for micropropagation. However, each species has specific mineral needs for this type of cultivation. The objective was to assess the impacts of the saline solution culture medium on the performance of the photosynthetic apparatus and growth of Bromelia antiacantha during in vitro cultivation, and thus to elucidate the mitigation of the nutritional imbalance that can interfere in the electron transport in the plants. Plants were cultivated in a salt concentration gradient of MS medium (0%, 25%, 50%, 75% or 100%). The growth traits and fluorescence a chlorophyll were analyzed. Intermediate concentrations of MS medium resulted in plants with a larger number of leaves and longer root length. The OJIP curves and results of the JIP test showed that the plants grown without MS salts presented less efficient photosystem II (PSII), as indicated by the performance index [Pi(total)]. In contrast, the intermediate concentrations (MS 25% and 50%) had a positive effect on the performance of the photosynthetic apparatus. The MS 25% medium can be used for in vitro cultivation of B. antiacantha, enabling the development of plants with suitable physiological qualities for planting in the field.


2020 ◽  
Vol 26 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Elizangela Rodrigues Santos ◽  
João Paulo Rodrigues Martins ◽  
Luiz Carlos de Almeida Rodrigues ◽  
Andreia Barcelos Passos Lima Gontijo ◽  
Antelmo Ralph Falqueto

Abstract When propagated in vitro, explants receive all the nutrients needed for their growth, including carbohydrates, from the culture medium. However, it is not well understood how the type and concentration of carbohydrates can affect the functioning of the photosynthetic apparatus (particularly photosystem II) of these plants. The aim was to assess the morphophysiological responses of Billbergia zebrina plants in function of sources and concentrations of carbohydrates during in vitro culture. Side shoots of plants previously established in vitro were individualized and transferred to a culture medium containing fructose, glucose or sucrose in four concentrations (0, 15, 30 or 45 g L−1). After growth for 55 days, the chlorophyll a fluorescence transient, leaf anatomy and growth were analyzed. The concentration and type of carbohydrate employed during in vitro culture did not decrease the photosynthetic apparatus performance. However, concentrations above 30 g L−1 led to anatomical modifications, revealing some degree of stress suffered by the plants. When grown in concentrations of 15 and 30 g L−1, irrespective of the carbohydrate used, the plants presented greater stomatal density. The supplementation of the culture medium with monosaccharides caused alterations in the development of the xylem vessels, such as increased number and diameter, allowing adjustment to the microenvironmental conditions. The in vitro conditions influenced the photosynthetic and anatomical responses of plants. The concentration interval from 15 to 30 g L−1 sucrose had a better effect by not causing large changes in the performance of the photosynthetic apparatus and anatomy of plants.


2019 ◽  
Vol 116 (33) ◽  
pp. 16631-16640 ◽  
Author(s):  
José G. García-Cerdán ◽  
Ariel L. Furst ◽  
Kent L. McDonald ◽  
Danja Schünemann ◽  
Matthew B. Francis ◽  
...  

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559. Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alonso Zavafer ◽  
Ievgeniia Iermak ◽  
Mun Hon Cheah ◽  
Wah Soon Chow

AbstractThe quenching of chlorophyll fluorescence caused by photodamage of Photosystem II (qI) is a well recognized phenomenon, where the nature and physiological role of which are still debatable. Paradoxically, photodamage to the reaction centre of Photosystem II is supposed to be alleviated by excitation quenching mechanisms which manifest as fluorescence quenchers. Here we investigated the time course of PSII photodamage in vivo and in vitro and that of picosecond time-resolved chlorophyll fluorescence (quencher formation). Two long-lived fluorescence quenching processes during photodamage were observed and were formed at different speeds. The slow-developing quenching process exhibited a time course similar to that of the accumulation of photodamaged PSII, while the fast-developing process took place faster than the light-induced PSII damage. We attribute the slow process to the accumulation of photodamaged PSII and the fast process to an independent quenching mechanism that precedes PSII photodamage and that alleviates the inactivation of the PSII reaction centre.


2012 ◽  
Vol 442 (3) ◽  
pp. 621-629 ◽  
Author(s):  
Radin Sadre ◽  
Christian Pfaff ◽  
Stephan Buchkremer

PQ-9 (plastoquinone-9) has a central role in energy transformation processes in cyanobacteria by mediating electron transfer in both the photosynthetic as well as the respiratory electron transport chain. The present study provides evidence that the PQ-9 biosynthetic pathway in cyanobacteria differs substantially from that in plants. We identified 4-hydroxybenzoate as being the aromatic precursor for PQ-9 in Synechocystis sp. PCC6803, and in the present paper we report on the role of the membrane-bound 4-hydroxybenzoate solanesyltransferase, Slr0926, in PQ-9 biosynthesis and on the properties of the enzyme. The catalytic activity of Slr0926 was demonstrated by in vivo labelling experiments in Synechocystis sp., complementation studies in an Escherichia coli mutant with a defect in ubiquinone biosynthesis, and in vitro assays using the recombinant as well as the native enzyme. Although Slr0926 was highly specific for the prenyl acceptor substrate 4-hydroxybenzoate, it displayed a broad specificity with regard to the prenyl donor substrate and used not only solanesyl diphosphate, but also a number of shorter-chain prenyl diphosphates. In combination with in silico data, our results indicate that Slr0926 evolved from bacterial 4-hydroxybenzoate prenyltransferases catalysing prenylation in the course of ubiquinone biosynthesis.


1993 ◽  
Author(s):  
Rachel Nechushtai ◽  
Parag Chitnis

The major goal of the proposed research was to study the role of a 70-kDa heat shock cognate protein from chloroplasts (ct-HSP70) in the assembly of chlorophyll-protein complexes. The latters are mostly important in allowing photosynthesis to occur. Photosynthesis is at the heart of crop productivity and the knowledge of the biogenesis of the photosynthetic apparatus is essential to manipulate the efficiency of photosynthesis. The characterization of the function of the ct-HSP70 was planned to be studied in vitro by assaying its capability to physically interact with the thylakoid proteins and to assist their assembly into thylakoid membranes. We planned to identify regions in the light-harvesting complex protein (LHCP) that interact with the ct-HSP70 and characterize the interaction between them. We also intended to isolate cDNA clones encoding ct-HSP70, sequence them, express one of them in E. coli and use the purified protein for functional assays. The research in this BARD proposal aimed at providing insights and aid in understanding the mechanism by which plants may respond to the heat stress. Since plants often experience increased temperatures.


1987 ◽  
Vol 42 (6) ◽  
pp. 663-669 ◽  
Author(s):  
Gary Gardner ◽  
James R. Sanborn

Although significant differences in activity between optical isomers have been recognized in many types of pesticides, the role of stereoselectivity has not been fully characterized for one of the most important classes of commercial herbicides, those that inhibit photosynthetic electron transport. This report describes experiments in which optically active α-methylbenzylamine or sec-butylamine was used as starting material for the synthesis of optically active triazine and urea herbicides. The biological activities of the compounds were determined in two in vitro chloroplast assays - competition for specifically bound [14C]atrazine and inhibition of photosystem II-medi- ated dye reduction - as well as in whole plant phytotoxicity. In both in vitro assays the (-)-isomer of the N-a-methylbenzyl triazine was about 15-fold more active than the (+)-isomer, and the racemate fell in between and was of about the same potency as atrazine. The same relative activities were also seen for in vivo phytotoxicity. The a-methylbenzyl urea derivatives were much less herbicidally active, but the in vitro assays were able to discriminate between the optical isomers. In both assays, the (-)-isomer of the urea was much more active than the (+)-isomer, with the racemate intermediate. Steric factors play a critical role in the degree of this chiral discrimination, since in both the corresponding triazines and ureas, the optically active molecules synthesized from the enantiomers of 2-butylamine showed only slight differences in activity. Saturation of the phenyl ring of the a-methylbenzyl triazines resulted in molecules which still showed substantial differences in activity related to chirality, further supporting the importance of steric factors, rather than electronic, in this chiral discrimination.


Sign in / Sign up

Export Citation Format

Share Document