scholarly journals The Phylogenetic Position of Vincetoxicum pannonicum (Borhidi) Holub Supports the Species' Allopolyploid Hybrid Origin

2020 ◽  
Vol 89 (3) ◽  
Author(s):  
Orsolya Horváth ◽  
Levente Laczkó ◽  
Zsuzsa Lisztes-Szabó ◽  
Attila Molnár V. ◽  
Agnieszka Popiela ◽  
...  

The Pannonian endemic species <em>Vincetoxicum pannonicum </em>was described from specimens collected in Hungary and occurs at only few locations. It is considered “vulnerable” according to the International Red List. The chromosome set was reported to be tetraploid, and the species was hypothesized to be an allotetraploid hybrid of the Balkan species <em>V. fuscatum </em>and the Adriatic species <em>hirundinaria </em>subsp. <em>adriaticum. </em>We investigated the origin of <em>V. pannonicum </em>using molecular phylogenetic methods by separately analyzing the multicopy nuclear ribosomal internal transcribed spacer (nrITS) and the plastid-encoded <em>trn</em>H-<em>psb</em>A DNA regions and by evaluating discrepancies between the produced gene trees. Paralogs in the nrITS region clustered in two main groups, one of which was closest to <em>V. fuscatum</em>, and the other included <em>V. hirundinaria </em>subsp. <em>adriaticum</em>. According to <em>trn</em>H-<em>psb</em>A sequences, <em>V. pannonicum </em>and <em>V. hirundinaria </em>subsp. <em>adriaticum </em>formed a single group. Our results show that <em>V. pannonicum </em>diversified because of hybrid speciation, in which <em>V. fuscatum </em>was the pollen donor. We discovered a similar placement of <em>V. maeoticum</em>, which suggests a further hybridization event between <em>V. fuscatum </em>and a species of the <em>V. hirundinaria </em>group. Our genome-size estimate indicates almost sixfold larger genome size in <em>V. pannonicum </em>compared to the maternal diploid parent, suggesting hexaploidy; however, <em>V. pannonicum </em>is tetraploid. This may suggest cytological diploidization in the allopolyploid <em>V. pannonicum</em>. We observed substantial genetic distance between <em>V. hirundinaria </em>subsp. <em>adriaticum </em>and all other subspecies of <em>V. hirundinaria</em>, and we therefore propose that <em>V. adriaticum </em>should be regarded as a separate species.

Author(s):  
Enrico Palchetti ◽  
Massimo Gori ◽  
Stefano Biricolti ◽  
Alessandro Calamai ◽  
Lorenzo Bini ◽  
...  

two new species of genus Piper L. from Madagascar: Piper malgassicum and Piper tsarasotrae, were analyzed to investigate their phylogenetic position and evolutionary history. Both plastidial and nuclear markers were used for sequencing. The plastidial markers (ndhF and the trnL intron) showed a close relationship between the two species with respect to the other species of Piper. Both species appeared phylogenetically related to the African P. guineense and the Malagasian/Mascarenhas endemic P. borbonense. The nuclear marker (G3PDH) amplification produced two separate sets of sequences: &ldquo;long&rdquo; sequences, that could be easily translated into an amino acid chain, and &ldquo;short&rdquo; sequences, characterized by deletions that did not allowed to translate them correctly to an amino acid sequence. Analyzing together the nuclear sequences, we observed that the &ldquo;long&rdquo; sequence of P. tsarasotrae had a stricter relationship to the African accessions of P. guineense, while the accession of P. malgassicum was more strictly related to P. borbonense. On the contrary both &ldquo;short&rdquo; sequences of Piper malgassicum and Piper tsaratsotrae resulted phylogenetically related to Asian accessions and more distantly related to the formerly cited species. This unexpected result was tentatively explained with a more ancient hybridization event between an ancestor of P. malgassicum and P. tsarasotrae (and possibly P. borbonense) and an Asian species of Piper. The Asian contribution would have produced the ancestors of the &ldquo;short&rdquo; sequences that would eventually have lost functionality by deletions, becoming paralogs. A more recent hybridization event would have led to the separation of Piper malgassicum from Piper tsarasotrae with an African pollen-derived genome contribution from P. guineense or, more probably, an ancestor thereof, to an ancestor of P. tsarasotrae. The chromosome numbers of P. tsarasotrae (2n = about 38) and P. malgassicum (2n = about 46), were more like the Asian species than to the American species. Unfortunately, no chromosome number of the African species P. guineense is currently available, to analyze eventual chromosomal connections.


Phytotaxa ◽  
2015 ◽  
Vol 234 (3) ◽  
pp. 271
Author(s):  
Gemma Mas de Xaxars ◽  
Alain Fridlender ◽  
Teresa Garnatje ◽  
Joan Vallès

Jacobaea ×mirabilis is a hybrid taxon, formerly included in the genus Senecio, originating from J. adonidifolia and J. leucophylla as progenitors. It inhabits a few French mountain locations in the Pyrenees and in the Massif Central. In this paper, we characterize the hybrid and its parental taxa using molecular phylogenetic and cytogenetic (genome size) methods. These data are useful to confirm the hybrid status of the studied taxon. Additionally, we clarify nomenclatural issues connected with this species and fulfil the conditions for valid publication of its name in Jacobaea. The name of this hybrid is also lectotypified.


Zootaxa ◽  
2021 ◽  
Vol 5026 (2) ◽  
pp. 286-300
Author(s):  
AWAL RIYANTO ◽  
MUHAMMAD ALIF FAUZI ◽  
IRVAN SIDIK ◽  
MUMPUNI ◽  
MOHAMMAD IRHAM ◽  
...  

To reveal the diversity of Indonesian bent-toed geckos, we pay attention to Kalimantan (Borneo)—an island which has received less attention than other Indonesian islands such as Sumatra, Java, Sulawesi, the Moluccas, and the Lesser Sunda archipelagos. About 30 years after Hikida (1990) described three new Cyrtodactylus from Borneo, four more species were described, namely C. limajalur and C. muluensis in 2019, and C. hantu and C. miriensis in 2021, all by Davis et al. Through examination of the collection at MZB and three addition specimens collected from Tawau, we found several undescribed species, one of which we describe here. This new species is easily differentiated from all other congeners by the combination of the following characters: maximum SVL of at least 65.8 mm; no tubercles on dorsal surface of upper arm; tubercles present in the ventrolateral body folds; 28–30 paravertebral tubercles; 17–20 longitudinal dorsal tubercle rows; 39–46 ventral scale rows at midbody; 17–19 subdigital lamellae on fourth toe; precloacal pit with 5–7 pores in males arranged in a wide Λ-shape but absent in females; no enlarged transverse median subcaudals; paired dark brown semilunar-shaped markings on the upper nape. Further study is needed to reveal its molecular phylogenetic position and biogeographical history.  


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


2018 ◽  
Vol 63 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Maria Isabel Müller ◽  
Drausio Honorio Morais ◽  
Reinaldo José da Silva

Abstract Three valid species of Haplometroides Odhner, 1910 parasitise snakes and amphisbaenians from South America. This study provides additional data on morphometric and molecular phylogenetic position inferred from the nuclear ribosomal gene 28S (partial). DNA sequences were isolated from Haplometroides intercaecalis Silva, Ferreira and Strüssmann, 2007 found in one specimen of Phalotris matogrossensis Lema, D’Agostini and Cappellari, 2005. Five digenean specimens were recovered from the esophagus of this snake, and four specimens were used for morphometrical studies and one specimen for molecular analysis. Phylogenetic analysis using maximum likelihood and Bayesian methods was conducted with sequences available for the order Plagiorchiida and its phylogenetic position places H. intercaecalis among the brachycoeliids Brachycoelium (Dujardin, 1845) Stiles and Hassall, 1898 and Parabrachycoelium Pérez-Ponce de León, Mendoza-Garfias, Razo-Mendivil and Parra-Olea, 2011, and the mesocoeliid Mesocoelium Odhner, 1910, not closely related to plagiorchids as expected. Due to morphological differences among these families, it may be necessary to create a new family to accommodate Haplometroides spp. However, more genera/taxa as well as other molecular markers should be added in future studies to confirm our results and resolve this matter. This is the first phylogenetic positioning of digeneans of the genus Haplometroides, contributing to the systematic analysis of the helminthological biodiversity of Neotropical snakes.


2021 ◽  
Vol 106 ◽  
pp. 325-339
Author(s):  
Shirley A. Graham ◽  
Peter W. Inglis ◽  
Taciana B. Cavalcanti

Crenea Aubl. (Lythraceae) is a ditypic genus of subshrubs occurring in mangrove vegetation on the coasts of northern South America. Phylogenetic analyses based on morphology have offered unresolved and conflicting phylogenetic positions for the genus in the family. This study presents the first molecular sequences for Crenea, from nrITS, rbcL, trnL, trnL-F, and matK regions. Molecular phylogenetic analyses find full support for Crenea within Ammannia L., a relationship not previously recognized. Ammannia is a globally distributed genus of terrestrial to amphibious herbs mostly occurring in freshwater marshes and wetlands. It was recently reconfigured based on phylogenetic evidence to include the genera Nesaea Comm. ex Kunth and Hionanthera A. Fern. & Diniz. The transfer of Crenea to Ammannia further extends the morphological, ecological, and biogeographical diversity of Ammannia and provides the final evidence defining Ammannia as a monophyletic lineage of the Lythraceae. A revised circumscription of Ammannia s.l. adds several new morphological character states and the first species in the genus restricted to mangrove vegetation. Two changes in taxonomic status are made: Ammannia maritima (Aubl.) S. A. Graham, P. W. Inglis, & T. B. Cavalc., comb. nov., and Ammannia patentinervius (Koehne) S. A. Graham, P. W. Inglis, & T. B. Cavalc., comb. nov. The new combinations are described, a list of exsiccatae examined is provided, and the effects of the reconfiguration to the morphology and biogeography of the genus are detailed.


2021 ◽  
pp. 1-13
Author(s):  
Ishan Agarwal ◽  
Rachunliu G. Kamei ◽  
Stephen Mahony

Abstract Northeast Indian biodiversity has long been considered to have a stronger affinity to Southeast Asian rather than Peninsular Indian fauna, however, few molecular phylogenetic studies have explored this hypothesis. In Asia, the polyphyletic gekkonid genus Cnemaspis sensu lato is comprised of two distantly related groups; one primarily from South Asia with some members in Southeast Asia, and the other exclusively from Southeast Asia. Cnemaspis assamensis is a systematically obscure and geographically isolated species (>1400 km from its nearest congeners) from the Brahmaputra River Valley in Northeast India. We provide the first molecular phylogenetic assessment of this species based on a partial ND2 gene fragment. Cnemaspis assamensis is determined to be a deeply divergent (Oligocene) member of the South Asian radiation and is sister to the podihuna clade which is endemic to Sri Lanka. The biogeographic implications of this find are discussed and this is suspected to represent a rare example of true disjunction between the wet zones of Northeast India and southern India/Sri Lanka. These results further emphasise the importance of Northeast India as a refuge for unique ancient faunal lineages.


2019 ◽  
Vol 189 (3) ◽  
pp. 293-310 ◽  
Author(s):  
Ondřej Popelka ◽  
Michal Sochor ◽  
Martin Duchoslav

Abstract Ficaria is a taxonomically intriguing polyploid complex with high morphological variability. Both hybridization and polyploidization have been suggested as the main evolutionary forces behind the high morphological variability in this genus; however, detailed studies are lacking. In Central Europe, two Ficaria taxa (diploid F. calthifolia and tetraploid F. verna subsp. verna) occasionally co-occur in local sympatry, which might result in hybridization. We investigated sympatric populations of the two Ficaria taxa using flow cytometry, chromosome counts, AFLP analysis and plastid DNA sequencing; we also performed experimental homoploid and heteroploid crosses to determine the frequency and direction of hybrid triploid formation, an alternative route of triploid origin (autopolyploidy) and the possibility of a one-step neoallotetraploid origin. Sympatric populations were composed of three genetic clusters corresponding to diploid F. calthifolia (2n = 16), tetraploid F. verna subsp. verna (2n = 32) and triploid plants (2n = 24). The holoploid genome size and AFLP data suggest a hybrid origin of the triploids, thereby making their formation via autopolyploidization in F. calthifolia unlikely. The triploid populations are monoclonal and of independent origin. In contrast, the parental populations exhibit high genotypic diversity and frequent sexual reproduction, including those of predominantly asexual F. verna subsp. verna. Experimental crossing confirmed that both parental taxa produce fertile seeds via a sexual pathway, but not by apomixis, and that both serve as pollen acceptors in heteroploid crosses, which is consistent with the plastid sequencing. However, hybridization is asymmetric, with maternal-excess crosses being significantly more successful. No signs of neoautotetraploidization or neoallotetraploidization were detected. In summary, recent gene flow between the studied Ficaria taxa is either limited or absent.


2019 ◽  
Vol 24 (7) ◽  
pp. 1284-1309 ◽  
Author(s):  
Philipp Chetverikov ◽  
C. CRAEMER C. CRAEMER ◽  
T. CVRKOVIĆ T. CVRKOVIĆ ◽  
P.G. EFIMOV P.G. EFIMOV ◽  
P.B. KLIMOV P.B. KLIMOV ◽  
...  

A new vagrant eriophyoid mite species of the archaic genus Pentasetacus (Schliesske 1985), P. novozelandicus n. sp., is described with the aid of conventional microscopy, confocal laser scanning microscopy and scanning electron microscopy. It was found on Araucaria heterophylla, which is an araucarian that is endemic to Norfolk Island and introduced to New Zealand. Partial sequences of mitochondrial barcode COI gene and D1–D2 domains of nuclear rDNA of two pentasetacid mites, P. araucariae (MK903025 and MK898944) and P. novozelandicus n. sp. (MK903024 and MK898943) are provided. Molecular phylogenetic analyses of full-length D1–D2 eriophyoid sequences, including GenBank sequences and newly generated sequences of pentasetacids, confirmed the monophyly of Pentasetacidae but failed to resolve the basal phylogeny of Eriophyoidea. This may be because the D1–D2 domains of 28S are hypervariable in Eriophyoidea. Moreover, in pentasetacids D1–D2 sequences are about 20% shorter than in other eriophyoids, and thus harder to align. Two types of anal lobes are described in Eriophyoidea: (1) Eriophyidae s.l. and Phytoptidae s.l. have bilaterally symmetric lobes; (2) pentasetacids have non-divided lobes. The presence of an anal secretory apparatus, comprising internal structures that have previously been described in Eriophyidae s.l. and Phytoptidae s.l., is confirmed in pentasetacid genera. The phylogeny of pentasetacids is also discussed in the context of the paleobiography of Araucariaceae.


Sign in / Sign up

Export Citation Format

Share Document