CORROSION AND WEAR BEHAVIOR OF HIGH VELOCITY OXYGEN FUEL SPRAYED WC-CO COATINGS

Author(s):  
Dragos Utu
2018 ◽  
Vol 44 (11) ◽  
pp. 12180-12193 ◽  
Author(s):  
Mitra Akhtari Zavareh ◽  
Ehsan Doustmohammadi ◽  
Ahmed A.D.M Sarhan ◽  
Ramin Karimzadeh ◽  
Pooria Moozarm Nia ◽  
...  

2017 ◽  
Vol 69 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Shiyu Cui ◽  
Qiang Miao ◽  
Wenping Liang ◽  
Yi Xu ◽  
Baiqiang Li

Purpose The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of the different processes are analyzed individually. The microstructural characteristics of the as-sprayed coatings are presented and the wear mechanisms of the different WC–10Co–4Cr coatings are discussed in detail. Design/methodology/approach The WC–10Co–4Cr coatings were formed on the surface of Q235 steel by plasma and HVOF spraying. Findings Plasma spraying causes more decarburizing decomposition of the WC phase than HVOF spraying. In the plasma spraying process, η(Cr25Co25W8C2) phase appears and the C content decreases from the top surface of the coating to the substrate. Practical implications In this study, two WC–10Co–4Cr coatings on Q235 steel prepared by plasma and HVOF spraying were compared with respect to the sliding wear behavior. Originality/value The wear mechanisms of the plasma- and HVOF-sprayed coatings were abrasive and oxidation, respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 3984-3988
Author(s):  
Bai Lin Zha ◽  
Xiao Jing Yuan ◽  
De Wen Wang

Environmental protection and worker safety measures against the extensively used hard chrome plating (EHC) is becoming more stringent, which leads to the development and application of alternative technology. As one of the most promising replacement technology of EHC, WC/Co coatings deposited by High Velocity Oxygen Fuel (HVOF) have well performances in corrosion and wear resistance. The paper analyzed technical characteristics, property and cost of EHC and HVOF deposited WC-Co coatings, while results show that performance of HVOF sprayed WC-Co coatings is superior or equal to EHC with much higher expense, so current replacement of EHC by HVOF centers airplane and military arm field which have relatively higher profit.


Alloy Digest ◽  
2008 ◽  
Vol 57 (7) ◽  

Abstract Colmonoy No. 43HV comprises a nickel-base alloy recommended for hard surfacing parts to resist wear, corrosion, heat, and galling. Deposits that have moderate hardness have increased ductility and slightly less resistance to abrasion than Colmonoy 53HV. Deposits can be finished by grinding or machined with carbide tooling. Colmonoy No. 43HV is supplied as an atomized powder specially sized for application with high-velocity oxygen fuel (HVOF) systems. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance and surface qualities as well as heat treating and surface treatment. Filing Code: Ni-664. Producer or source: Wall Colmonoy Corporation.


2021 ◽  
pp. 2150274
Author(s):  
Dingjun Li ◽  
Wenlang Huang ◽  
Xiaohu Yuan ◽  
Taihong Huang ◽  
Chao Li ◽  
...  

The oxidation behaviour of Ni8Al and Ni25Cr coatings produced by high velocity oxygen fuel spray (HVOF) which were deposited on Fe-based alloys (CB2) was investigated. We simulated the service environment of the steam generator unit, and put the samples in a thermostatic tube furnace at 650[Formula: see text] in air with 20 wt.% water vapor for 1000 hours of cyclic oxidation. The formation mechanism are explained using SEM, XRD, and EDX. There were no spallations and obvious cracks in both coatings. Ni25Cr coating generated a better protection oxides scale than that scale on Ni8Al. The behavior and mechanism of the oxide scale formation had an important influence in coatings and we have discussed these phenomenons in the study.


Sign in / Sign up

Export Citation Format

Share Document