LIQUID GAS TRAFFIC IN THE ARCTIC UNDER CLIMATE WARMING

Author(s):  
Victor Tretyakov
Keyword(s):  
2009 ◽  
Vol 21 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Wojciech Majewski ◽  
Andrzej Tatur

AbstractCribroelphidium webbi sp. nov. is the only adequately described sub-Recent elphidiid foraminifer from Antarctica. In Admiralty Bay (King George Island, South Shetland Islands), it is found at several locations within inner fiord setting at water depths between 33 and 165 m, but most commonly shallower than 100 m. In outer basins this foraminifer is absent. In the cores analysed, C. webbi sp. nov. is present in well-constrained sub-Recent horizons that are clearly related to climate warming and deglaciation. These horizons represent a diachronous facies marker rather than a single stratigraphic layer. Cribroelphidium webbi sp. nov. shows clear association with retreating tidewater glaciers, therefore it is an important sensitive glacier-proximal indicator. It appears that it shares similar ecologic affinities with Cribroelphidium excavatum clavatum, which is widely distributed throughout the Arctic.


2015 ◽  
Vol 35 ◽  
pp. 9 ◽  
Author(s):  
Andrey Sikorski ◽  
Lyudmila Pavlova

<p>The species <em>Scolelepis finmarchicus</em> sp. nov. is described from the Norwegian and Barents Seas along the northern Norwegian coast and Kola peninsula. The occurrence of this species in the Kola Bay could be seen as a sign of climate warming in the area. Taxonomic issues existing in the genus <em>Scolelepis</em> within the area along the Norwegian coast and in the Barents Sea are briefly touched upon. Seven species belonging to <em>Scolelepis</em> have recently been recorded from the Atlantic sector of the Arctic. <em>Scolelepis</em> (<em>S</em>.) <em>matsugae</em> Sikorski, 1994 is newly synonymized with <em>S</em>. (<em>S</em>.) <em>laonicola</em> (Tzetlin, 1985). This article provides a brief review of <em>Scolelepis</em> together with an identification key for the genus from the Atlantic sector of the Arctic</p>


2004 ◽  
Vol 12 (1) ◽  
pp. 1-70 ◽  
Author(s):  
S Perin ◽  
D RS Lean

Depletion of stratospheric ozone, the principal atmospheric attenuator of ultraviolet-B (UVB) radiation, by man-made chemicals has raised scientific and public concern regarding the biological effects of increased UVB radiation on Earth. There is an increased awareness that existing levels of solar UV radiation have an important influence on biological and chemical processes in aquatic ecosystems. For aquatic organisms, numerous studies have shown direct detrimental effects of UVB radiation at each trophic level. Fortunately, many aquatic organisms also possess a range of photoprotective mechanisms against UV radiation toxicity. In addition to its direct impact, harmful effects of UVB radiation at a single-trophic level can cascade through the food web and indirectly affect organisms from other trophic levels. Because UV radiation photochemically reacts with humic substances and other photosensitive agents in the water, increases in solar UVB can also indirectly affect aquatic organisms through the production and (or) release of different photoproducts like biologically available nutrients and harmful reactive oxygen species. Polar aquatic ecosystems have been of particular concern, since stratospheric ozone-related UVB increases have been the greatest in these regions. With the influences of climate warming and the possibility of future volcanic eruptions, ozone losses are expected to get worse in the Arctic stratosphere, and the ozone layer recovery may not follow the slow decline of industrial ozone-depleting compounds in the atmosphere. Climate warming is also expected to bring important changes in underwater ultraviolet radiation (UVR) penetration in Arctic freshwaters that would be more significant to the aquatic biota than stratospheric ozone depletion.Key words: Arctic, UV radiation, UVB, ozone depletion, climate change, aquatic ecosystems.


Parasitology ◽  
2005 ◽  
Vol 132 (3) ◽  
pp. 387-401 ◽  
Author(s):  
E. J. JENKINS ◽  
A. M. VEITCH ◽  
S. J. KUTZ ◽  
E. P. HOBERG ◽  
L. POLLEY

We describe the epidemiology of the protostrongylid parasitesParelaphostrongylus odocoileiandProtostrongylus stilesiin Dall's sheep (Ovis dalli dalli) from the Mackenzie Mountains, Northwest Territories, Canada (65 °N; 128 °W). Peak numbers of 1st-stage larvae of both parasites were shed by Dall's sheep on their winter range from March until May. In larval development experiments in the Mackenzie Mountains, peak numbers of infective 3rd-stage larvae ofP. odocoileiwere available in gastropod intermediate hosts in August–September. For both protostrongylids, the majority of transmission likely occurs on the winter range, with infection of gastropods when they emerge from hibernation in spring, and infection of Dall's sheep upon their return in fall. We validated a degree-day model for temperature-dependent development of larvalP. odocoileiin gastropods, and applied degree-day models to describe and predict spatial and temporal patterns in development ofP. odocoileiandP. stilesiin northern North America. Temperature-dependent larval development may currently limit northward range expansion ofP. odocoileiinto naïve populations of Dall's sheep in the Arctic, but climate warming may soon eliminate such constraints. In Subarctic regions where bothP. odocoileiandP. stilesiare endemic, the length of the parasite ‘growing season’ (when temperatures were above the threshold for larval development) and amount of warming available for parasite development has increased over the last 50 years. Further climate warming and extension of the seasonal window for transmission may lead to amplification of parasite populations and disease outbreaks in host populations.


2020 ◽  
Vol 125 (12) ◽  
Author(s):  
Weiwei Fu ◽  
J. Keith Moore ◽  
François W. Primeau ◽  
Keith Lindsay ◽  
James T. Randerson

Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 153-165 ◽  
Author(s):  
E. Ejarque ◽  
E. Abakumov

Abstract. Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasise the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-nuclear magnetic resonance (NMR) spectroscopy. Also, the total mineralisable carbon was measured. Our results indicate that there is a predominance of aliphatic carbon structures, with a minimal variation of their functional-group composition both regionally and within soil depth. This vertical homogeneity and low level of aromaticity reflects the accumulation in soil of lowly decomposed organic matter due to cold temperatures. Mineralisation rates were found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the sensitivity that the soils of Western Siberia may have to increasing ambient temperatures and highlight the important role that this region can play in the global carbon balance under the effects of climate warming.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Wang ◽  
Katarzyna B. Tokarska ◽  
Jintao Zhang ◽  
Quansheng Ge ◽  
Zhixin Hao ◽  
...  

To limit global warming to well below 2°C in accord with the Paris Agreement, countries throughout the world have submitted their Intended Nationally Determined Contributions (INDCs) outlining their greenhouse gas (GHG) mitigation actions in the next few decades. However, it remains unclear what the resulting climate change is in response to the proposed INDCs and subsequent emission reductions. In this study, the global and regional warming under the updated INDC scenarios was estimated from a range of comprehensive Earth system models (CMIP5) and a simpler carbon-climate model (MAGICC), based on the relationship of climate response to cumulative emissions. The global GHG emissions under the updated INDC pledges are estimated to reach 14.2∼15.0 GtC/year in 2030, resulting in a global mean temperature increase of 1.29∼1.55°C (median of 1.41°C) above the preindustrial level. By extending the INDC scenarios to 2100, global GHG emissions are estimated to be around 6.4∼9.0 GtC/year in 2100, resulting in a global mean temperature increase by 2.67∼3.74°C (median of 3.17°C). The Arctic warming is projected to be most profound, exceeding the global average by a factor of three by the end of this century. Thus, climate warming under INDC scenarios is projected to greatly exceed the long-term Paris Agreement goal of stabilizing the global mean temperature at to a low level of 1.5‐2.0°C above the pre-industrial. Our study suggests that the INDC emission commitments need to be adjusted and strengthened to bridge this warming gap.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuezhen Zhang ◽  
Xiaxiang Li ◽  
Deliang Chen ◽  
Huijuan Cui ◽  
Quansheng Ge

AbstractSince the mid-19th century, the global atmospheric CO2 concentration (ACC) has increased dramatically due to the burning of fossil fuels. Because of unequal population growth and economic development among regions, the ACC increases possess strong spatial variability. Particularly, the increase in ACC has been larger in the mid-latitudes of the Northern Hemisphere (NH) than that at high- and low-latitudes. It is widely accepted that the ACC increase is the main reason for climate change, but the potential impacts of its spatial distribution on the climate system remain unclear. Therefore, we carried out two groups of 150-year experiments with the Community Earth System Model (CESM), using both spatially inhomogeneous (hereafter the SIC experiment) and homogenous (hereafter the SHC experiment) ACC increases in their settings. We found that the models’ divergences occurred over the NH mid-latitudes, the Arctic and the western part of the tropical Pacific. SHC overestimated (underestimated) climate warming over the Artic (mid-latitudes), which may be induced by the intensified westerly and weakened meridional heat exchange between mid- and high latitudes in the NH. Over the tropical Pacific, the overestimation of climate warming may be induced by intensified Walker circulation coupled with the La Niña climate mode. For the entire NH, relative to SIC, SHC overestimated the climate warming from 1850 to 1999 by ~10%. Meanwhile, the SHC experiment also overestimated the interannual variabilities in temperature and precipitation, resulting in more serious extreme events. These findings suggest that human contributions to climate warming and increased extreme events since the industrial revolution may be overestimated when using a spatially homogenous ACC.


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 393
Author(s):  
Evgeny Mikhailovich Chuvilin ◽  
Natalia Sergeevna Sokolova ◽  
Boris Aleksandrovich Bukhanov ◽  
Dinara Anvarovna Davletshina ◽  
Mikhail Yurievich Spasennykh

Gas-emission craters discovered in northern West Siberia may arise under a specific combination of shallow and deep-seated permafrost conditions. A formation model for such craters is suggested based on cryological and geological data from the Yamal Peninsula, where shallow permafrost encloses thick ground ice and lenses of intra- and subpermafrost saline cold water (cryopegs). Additionally, the permafrost in the area is highly saturated with gas and stores large accumulations of hydrocarbons that release gas-water fluids rising to the surface through faulted and fractured crusts. Gas emission craters in the Arctic can form in the presence of gas-filled cavities in ground ice caused by climate warming, rich sources of gas that can migrate and accumulate under pressure in the cavities, intrapermafrost gas-water fluids that circulate more rapidly in degrading permafrost, or weak permafrost caps over gas pools.


Sign in / Sign up

Export Citation Format

Share Document