scholarly journals In silico ADME in drug design – enhancing the impact

ADMET & DMPK ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Susanne Winiwarter ◽  
Ernst Ahlberg ◽  
Edmund Watson ◽  
Ioana Oprisiu ◽  
Mickael Mogemark ◽  
...  

<p>Each year the pharmaceutical industry makes thousands of compounds, many of which do not meet the desired efficacy or pharmacokinetic properties, describing the absorption, distribution, metabolism and excretion (ADME) behavior. Parameters such as lipophilicity, solubility and metabolic stability can be measured in high throughput in vitro assays. However, a compound needs to be synthesized in order to be tested. In silico models for these endpoints exist, although with varying quality. Such models can be used before synthesis and, together with a potency estimation, influence the decision to make a compound. In practice, it appears that often only one or two predicted properties are considered prior to synthesis, usually including a prediction of lipophilicity. While it is important to use all information when deciding which compound to make, it is somewhat challenging to combine multiple predictions unambiguously. This work investigates the possibility of combining in silico ADME predictions to define the minimum required potency for a specified human dose with sufficient confidence. Using a set of drug discovery compounds,in silico predictions were utilized to compare the relative ranking based on minimum potency calculation with the outcomes from the selection of lead compounds. The approach was also tested on a set of marketed drugs and the influence of the input parameters investigated.</p>

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3644 ◽  
Author(s):  
Thai-Son Tran ◽  
Minh-Tri Le ◽  
Thanh-Dao Tran ◽  
The-Huan Tran ◽  
Khac-Minh Thai

Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer’s disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer’s patients. In this study, in silico models were developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity relationship), and molecular docking, to screen virtually a database of compounds for AChE and BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47 substances (two curcumins and 45 flavonoids), with remarkable predicted pIC50 values against AChE and BACE-1 ranging from 4.24–5.11 (AChE) and 4.52–10.27 (BACE-1), were designed. The in vitro assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated that, by using in silico methods, a series of curcumin and flavonoid structures were generated with promising predicted bioactivities. This would be a helpful foundation for the experimental investigations in the future. Designed compounds which were the most feasible for chemical synthesis could be potential candidates for further research and lead optimization.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2019 ◽  
Vol 16 (2) ◽  
pp. 116-127 ◽  
Author(s):  
Ashwani Kumar ◽  
Vineet Mehta ◽  
Utkarsh Raj ◽  
Pritish Kumar Varadwaj ◽  
Malairaman Udayabanu ◽  
...  

Background: Cholinesterase inhibitors are the first line of therapy for the management of Alzheimer’s disease (AD), however, it is now established that they provide only temporary and symptomatic relief, besides, having several inherited side-effects. Therefore, an alternative drug discovery method is used to identify new and safer ‘disease-modifying drugs’. Methods: Herein, we screened 646 small molecules of natural origin having reported pharmacological and functional values through in-silico docking studies to predict safer neuromodulatory molecules with potential to modulate acetylcholine metabolism. Further, the potential of the predicted molecules to inhibit acetylcholinesterase (AChE) activity and their ability to protect neurons from degeneration was determined through in-vitro assays. Results: Based on in-silico AChE interaction studies, we predicted quercetin, caffeine, ascorbic acid and gallic acid to be potential AChE inhibitors. We confirmed the AChE inhibitory potential of these molecules through in-vitro AChE inhibition assay and compared results with donepezil and begacestat. Herbal molecules significantly inhibited enzyme activity and inhibition for quercetin and caffeine did not show any significant difference from donepezil. Further, the tested molecules did not show any neurotoxicity against primary (E18) hippocampal neurons. We observed that quercetin and caffeine significantly improved neuronal survival and efficiently protected hippocampal neurons from HgCl2 induced neurodegeneration, which other molecules, including donepezil and begacestat, failed to do. Conclusion: Quercetin and caffeine have the potential as “disease-modifying drugs” and may find application in the management of neurological disorders such as AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras ◽  
Chandravanu Dash

In the 21st century, we have witnessed three coronavirus outbreaks: SARS in 2003, MERS in 2012, and the ongoing pandemic coronavirus disease 2019 (COVID-19). The search for efficient vaccines and development and repurposing of therapeutic drugs are the major approaches in the COVID-19 pandemic research area. There are concerns about the evolution of mutant strains (e.g., VUI – 202012/01, a mutant coronavirus in the United Kingdom), which can potentially reduce the impact of the current vaccine and therapeutic drug development trials. One promising approach to counter the mutant strains is the “development of effective broad-spectrum antiviral drugs” against coronaviruses. This study scientifically investigates potent food bioactive broad-spectrum antiviral compounds by targeting main protease (Mpro) and papain-like protease (PLpro) proteases of coronaviruses (CoVs) using in silico and in vitro approaches. The results reveal that phycocyanobilin (PCB) shows potential inhibitor activity against both proteases. PCB had the best binding affinity to Mpro and PLpro with IC50 values of 71 and 62 μm, respectively. Also, in silico studies with Mpro and PLpro enzymes of other human and animal CoVs indicate broad-spectrum inhibitor activity of the PCB. As with PCB, other phycobilins, such as phycourobilin (PUB), phycoerythrobilin (PEB), and phycoviolobilin (PVB) show similar binding affinity to SARS-CoV-2 Mpro and PLpro.


2015 ◽  
Vol 81 (10) ◽  
pp. 3561-3570 ◽  
Author(s):  
Timothy J. Johnson ◽  
Randall S. Singer ◽  
Richard E. Isaacson ◽  
Jessica L. Danzeisen ◽  
Kevin Lang ◽  
...  

ABSTRACTIncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensalEscherichia colihost. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containingE. colifrom pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containingE. coliin pig feces (P< 0.001) and increased movement of the IncA/C plasmid to other indigenousE. colihosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other thanE. coli.In vitrocompetition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage inE. coliandSalmonella.In vitrotransfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracyclinein vitrostrongly selected for IncA/C plasmid-containingE. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.


Sign in / Sign up

Export Citation Format

Share Document