scholarly journals Affordable voltammetric sensor based on anodized disposable pencil graphite electrodes for sensitive determination of dopamine and uric acid in presence of high concentration of ascorbic acid

Author(s):  
Preethi Sankaranarayanan ◽  
Sangaranarayanan V. Venkateswaran

<p class="PaperAbstract">A simple, disposable and low - cost voltammetric sensor based on the anodized pencil graphite electrode (APGE) for the simultaneous determination of dopamine (DA) and uric acid (UA) is demonstrated. The physico-chemical properties of the pencil graphite electrode (PGE) before and after anodization were analyzed using FT-IR, FT-Raman, SEM and EIS characterization techniques. In comparison to PGE, APGE exhibited excellent electrochemical activity towards the simultaneous detection of DA and UA with peak-to-peak separation of about 0.18 V even in the presence of high concentration (2 mM) of ascorbic acid (AA). The discrimination of APGE towards AA was rationalized through the absence of favorable surface interactions between oxygen rich functional groups on the surface of APGE and AA. Using DPV without any pre-concentration step and under optimized conditions, APGE displayed a linear range of 1 – 80 μM with an estimated limit of detection (LOD, 3σ/m) of 0.008 μM and 0.014 μM for DA and UA, respectively. Moreover, a higher sensitivity in comparison to other previously reported pretreated pencil graphite electrodes was observed for DA (34.32 μA/μM) and UA (12.33 μA/μM). The practical applicability of APGE was demonstrated through the estimation of DA in human blood serum and UA in urine samples.</p>

2011 ◽  
Vol 81 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Malledevaru Mallesha ◽  
Revanasiddappa Manjunatha ◽  
C. Nethravathi ◽  
Gurukar Shivappa Suresh ◽  
Michael Rajamathi ◽  
...  

2016 ◽  
Vol 8 (35) ◽  
pp. 6537-6544 ◽  
Author(s):  
I. G. David ◽  
D. E. Popa ◽  
M. Buleandra ◽  
Z. Moldovan ◽  
E. E. Iorgulescu ◽  
...  

A disposable pencil graphite electrode was used for the first time for rapid voltammetric determination of chlorogenic acid in green coffee dietary supplements.


2021 ◽  
Vol 83 (3) ◽  
pp. 85-92
Author(s):  
Azleen Rashidah Mohd Rosli ◽  
Farhanini Yusoff ◽  
Saw Hong Loh ◽  
Hanis Mohd Yusoff ◽  
Muhammad Mahadi Abdul Jamil ◽  
...  

A magnetic nanoparticles/reduced graphene oxide modified glassy carbon electrode (MNP/rGO/GCE) was fabricated via one-step facile synthesis route for the simultaneous determination of ascorbic acid (AA), dopamine (DA), along with uric acid (UA). A series of diseases and disorders has been associated with irregular levels of these respective analytes, thus early detection is highly crucial. Physical and electrochemical characterization of the modified electrode was conducted by using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) analysis, X-Ray Diffraction (XRD) analysis and Brauneur-Emmet-Teller (BET), Cyclic Voltammetry (CV) and Electron Impedance Spectroscopy (EIS). The results obtained confirmed the formation of MNP/rGO composite. Differential pulse voltammetry (DPV) of MNP/rGO/GCE displays three well-defined peaks which associated to AA, DA and UA, respectively. The response towards DA is linear in the concentration range of 15 nM to 100 µM with a detection limit of 0.19 nM while a response to AA and UA is also linear in the concentration range of 10 µM to 100 µM with a limit of detection 0.22 µM and 45 nM respectively. The proposed modified electrode offers a good response towards simultaneous detection of three different electroactive species with excellent electron transfer rate, great capacitance and ideal diffusive control behavior.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3069
Author(s):  
Qiannan You ◽  
Zhongyang Guo ◽  
Rui Zhang ◽  
Zhimin Chang ◽  
Mingfeng Ge ◽  
...  

Two-dimensional (2D) MXenes have shown a great potential for chemical sensing due to their electric properties. In this work, a Ti3C2Tx/polypyrrole (MXene/PPy) nanocomposite has been synthesized and immobilized into a glassy carbon electrode to enable the simultaneous recognition of dopamine (DA) and uric acid (UA) under the interference of ascorbic acid (AA). The multilayer Ti3C2Tx MXene was prepared via the aqueous acid etching method and delaminated to a single layer nanosheet, benefiting the in-situ growth of PPy nanowires. The controllable preparation strategy and the compounding of PPy material remain great challenges for further practical application. A facile chemical oxidation method was proposed to regulate magnitude and density during the forming process of PPy nanowire, which promotes the conductivity and the electrochemical active site of this as-prepared nanomaterial. The MXene/PPy nanocomposite-modified electrode exhibited the selective determination of DA and UA in the presence of a high concentration of AA, as well as a wide linear range (DA: 12.5–125 μM, UA: 50–500 μM) and a low detection limit (DA: 0.37 μM, UA: 0.15 μM). More importantly, the simultaneous sensing for the co-existence of DA and UA was successfully achieved via the as-prepared sensor.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1691 ◽  
Author(s):  
Yue Wang ◽  
Tian Yang ◽  
Yasushi Hasebe ◽  
Zhiqiang Zhang ◽  
Dongping Tao

Carbon black (CB) and carbon nanotube (CNT) co-doped polyimide (PI) modified glassy carbon electrode (CB-CNT/PI/GCE) was first prepared for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The CB-CNT/PI/GCE exhibited persistent electrochemical behavior and excellent catalytic activities. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used for the simultaneous detection of AA, DA, and UA in their ternary mixture. The peak separations between AA and DA, and DA and UA, are up to 166 mV and 148 mV, respectively. The CB-CNT/PI/GCE exhibited high sensitivity to DA and UA, with the detection limit of 1.9 µM and 3 µM, respectively. In addition, the CB-CNT/PI/GCE showed sufficient selectivity and long-term stability, and was applicable to detect AA, DA, and UA in human urine sample.


RSC Advances ◽  
2015 ◽  
Vol 5 (16) ◽  
pp. 11925-11932 ◽  
Author(s):  
Jinying Sun ◽  
Libo Li ◽  
Xueping Zhang ◽  
Dong Liu ◽  
Simin Lv ◽  
...  

This paper demonstrates high electrocatalytic activity of NCNF/GCE towards small biomolecules. The proposed electrochemical sensor exhibits good selectivity, high sensitivity and excellent stability towards AA, DA and UA simultaneous detection.


Sign in / Sign up

Export Citation Format

Share Document