scholarly journals Molecular Study of Indigenous Bacterial Community Composition on Exposure to Soil Arsenic Concentration Gradient

2017 ◽  
Vol 66 (2) ◽  
pp. 209-221 ◽  
Author(s):  
Semanti Basu ◽  
Tanima Paul ◽  
Priya Yadav ◽  
Abhijit Debnath ◽  
Keka Sarkar

Community structure of bacteria present in arsenic contaminated agricultural soil was studied with qPCR (quantitative PCR) and DGGE (Denaturing Gradient Gel Electrophoresis) as an indicator of extreme stresses. Copy number of six common bacterial taxa (Acidobacteria, Actinobacteria, α, β and γ-Proteobacteria, Firmicutes) was calculated using group specific primers of 16S rDNA. It revealed that soil contaminated with low concentration of arsenic was dominated by both Actinobacteria and Proteobacteria but a shift towards Proteobacteria was observed with increasing arsenic concentration, and number of Actinobacteria eventually decreases. PCA (Principle Component Analysis) plot of bacterial community composition indicated a distinct resemblance among high arsenic content samples, while low arsenic content samples remained separated from others. Cluster analysis of soil parameters identifies three clusters, each of them was related to the arsenic content. Further, cluster analysis of 16S rDNA based DGGE fingerprint markedly distributed the soil bacterial populations into low (<10 ppm) and high (>10 ppm) arsenic content subgroups. Following analysis of diversity indices shows significant variation in bacterial community structure. MDS (Multi Dimensional Scaling) plot revealed distinction in the distribution of each sample denoting variation in bacterial diversity. Phylogenetic sequence analysis of fragments excised from DGGE gel revealed the presence of γ-Proteobacteria group across the study sites. Collectively, our experiments indicated that gradient of arsenic contamination affected the shape of the soil bacterial population by significant structural shift.

2018 ◽  
Vol 98 (4) ◽  
pp. 716-723 ◽  
Author(s):  
Laura N. Bugiel ◽  
Stuart W. Livingstone ◽  
Marney E. Isaac ◽  
Roberta R. Fulthorpe ◽  
Adam R. Martin

Soil microbial diversity is expected to be altered by the establishment of invasive plant species, such as dog-strangling vine (DSV) [Vincetoxicum rossicum (Apocynaceae)]. However, in urban ecosystems where DSV invasion is high, there is little research evaluating the impacts of DSV and other anthropogenic disturbances on microbial diversity. Our study was based in Rouge National Urban Park, Canada, where we used terminal restriction fragment length polymorphism data to evaluate (i) if DSV has a detectable impact on soil bacterial community composition and (ii) if these impacts occur independently of other anthropogenic change or soil characteristics. Variation in soil bacterial communities was greatly reduced in DSV-invaded sites vs. less-invaded sites. The degree of DSV invasion independently explained 23.8% of variation in bacterial community composition: a value similar to the explanatory power of proximity to roadways (which explained 22.6% of the variation in community composition), and considerably greater than soil parameters (pH, moisture, carbon, and nitrogen concentrations) which explained only between 6.0% and 10.0% of variation in bacterial community composition. Our findings indicate that DSV influences soil bacterial community composition independent of other anthropogenic disturbances and soil parameters, with potential impacts on multiple facets of plant–soil interactions and plant invasion dynamics.


2021 ◽  
Vol 12 (1) ◽  
pp. 157-172
Author(s):  
Shankar G. Shanmugam ◽  
Normie W. Buehring ◽  
Jon D. Prevost ◽  
William L. Kingery

Our understanding on the effects of tillage intensity on the soil microbial community structure and composition in crop production systems are limited. This study evaluated the soil microbial community composition and diversity under different tillage management systems in an effort to identify management practices that effectively support sustainable agriculture. We report results from a three-year study to determine the effects on changes in soil microbial diversity and composition from four tillage intensity treatments and two residue management treatments in a corn-soybean production system using Illumina high-throughput sequencing of 16S rRNA genes. Soil samples were collected from tillage treatments at locations in the Southern Coastal Plain (Verona, Mississippi, USA) and Southern Mississippi River Alluvium (Stoneville, Mississippi, USA) for soil analysis and bacterial community characterization. Our results indicated that different tillage intensity treatments differentially changed the relative abundances of bacterial phyla. The Mantel test of correlations indicated that differences among bacterial community composition were significantly influenced by tillage regime (rM = 0.39, p ≤ 0.0001). Simpson’s reciprocal diversity index indicated greater bacterial diversity with reduction in tillage intensity for each year and study location. For both study sites, differences in tillage intensity had significant influence on the abundance of Proteobacteria. The shift in the soil bacterial community composition under different tillage systems was strongly correlated to changes in labile carbon pool in the system and how it affected the microbial metabolism. This study indicates that soil management through tillage intensity regime had a profound influence on diversity and composition of soil bacterial communities in a corn-soybean production system.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250675
Author(s):  
Xiang Zheng ◽  
Qidi Zhu ◽  
Zhijun Zhou ◽  
Fangtong Wu ◽  
Lixuan Chen ◽  
...  

Insect microbial symbioses play a critical role in insect lifecycle, and insect gut microbiome could be influenced by many factors. Studies have shown that host diet and taxonomy have a strong influence on insect gut microbial community. In this study, we performed sequencing of V3-V4 region of 16S rRNA gene to compare the composition and diversity of 12 Ensifera from 6 provinces of China. Moreover, the influences of feeding habits and taxonomic status of insects on their gut bacterial community were evaluated, which might provide reference for further application research. The results showed that Proteobacteria (45.66%), Firmicutes (34.25%) and Cyanobacteria (7.7%) were the predominant bacterial phyla in Ensifera. Moreover, the gut bacterial community composition of samples with different feeding habits was significantly different, which was irrespective of their taxa. The highest diversity of gut bacteria was found in the omnivorous Ensifera. Furthermore, common and unique bacteria with biomarkers were found based on the dietary characteristics of the samples. However, the bacterial community structure of the Ensifera samples was significantly different from that of Caelifera. Therefore, we concluded that feeding habits and taxonomic status jointly affect the gut bacterial community composition of the samples from Orthoptera. However, the influence of feeding habit dominates when taxonomy category below the suborder level. In addition, the dominant, common and unique bacterial community structure could be used to predict the contrastic feeding habits of insects belonging to Ensifera.


2010 ◽  
pp. 63-67
Author(s):  
Leandro Nascimento Lemos ◽  
Afnan Khalil Ahmad Suleiman ◽  
Antônio Batista Pereira ◽  
Luiz Fernando Wurdig Roesch

Sign in / Sign up

Export Citation Format

Share Document