NEW RESULTS OF POLYMETALLIC, PGE AND REE MINERALIZATION RESEARCH IN THE SUWAŁKI ANORTHOSITE MASSIF (NE POLAND)

2018 ◽  
Vol 472 (472) ◽  
pp. 271-284 ◽  
Author(s):  
Janina Wiszniewska ◽  
Ewa Krzemińska ◽  
Olga Polechońska ◽  
Zdzisław Petecki ◽  
Michał Ruszkowski ◽  
...  

Suwałki Anortosite Massif (SAM) occurs in the crystalline basement of NE Poland within 200 km of the magmatic, Mesoproterozoic AMCG (anorthosite–mangerite–charnockite–granite) rock suite terrane called the Mazury Complex. SAM was discovered as a result of the drilling research of the prominent negative magnetic and gravimetric anomalies. There is an extensive negative anomaly of both potential fields related to the anorthosite massif. Gravimetric anomaly is surrounded by the bands of positive anomalies caused by rocks with elevated densities, such as granitoids, monzondiorites and granodiorites. A negative magnetic anomaly is surrounded by the bands of positive anomalies with significant amplitudes, particularly strongly marked from the south, west and north. Positive magnetic anomalies are associated with the presence of rocks with proven strong magnetic susceptibility due to the content of ferrolites (ilmenite-magnetite rocks) with accompanying Fe-Cu-Ni-Co sulphide mineralization. Fe-Ti-(V) ore deposits in the SAM were discovered in the early 1960s, in the region of Krzemianka and Udryn, but also Jeleniewo and Jezioro Okrągłe, under a thick overburden of Phanerozoic sedimentary rocks within small positive magnetic anomalies. These deposits were documented in about 100 deep boreholes to a depth of 2300 m, and the resources in C1 + C2 category were estimated for about 1.5 billion tons of titanium-magnetite ores with vanadium, mainly in the Krzemianka and Udryn ore fields. The model age obtained by the Re-Os NTIMS method for Fe-Ti-V ores and sulphides from the Krzemianka and Jezioro Okrągłe ore deposits was 1559 ±37 Ma with an initial ratio of 187Os/188Os = 1.16 ±0.06. This age was recognized as the age of the entire Suwałki Massif. Despite many years of research, the deep structure and the form of the massif has not been fully recognized. At present, geophysical and geological 3D modelling of borehole data is carried out using the OasisMontaj (Geosoft) software package. The 3D model is generated in the GeoModeller 3D application (Intrepid Geophysics) in order to recognize the geological correctness and interpretation of magnetic-gravity anomalies of the whole massif and its cover.

1997 ◽  
Vol 40 (5) ◽  
Author(s):  
P. Capuano ◽  
G. Florio ◽  
P. Gasparini

The results of about 120 magnetotelluric soundings carried out in the Vulsini, Vico and Sabatini volcanic areas were modeled along with Bouguer and aeromagnetic anomalies to reconstruct a model of the structure of the shallow (less than 5 km of depth) crust. The interpretations were constrained by the information gathered from the deep boreholes drilled for geothermal exploration. MT and aeromagnetic anomalies allow the depth to the top of the sedimentary basement and the thickness of the volcanic layer to be inferred. Gravity anomalies are strongly affected by the variations of morphology of the top of the sedimentary basement, consisting of a Tertiary flysch, and of the interface with the underlying Mesozoic carbonates. Gravity data have also been used to extrapolate the thickness of the neogenic unit indicated by some boreholes. There is no evidence for other important density and susceptibility heterogeneities and deeper sources of magnetic and/or gravity anomalies in all the surveyed area.


2020 ◽  
Vol 243 ◽  
pp. 259
Author(s):  
Viktor Alekseev

We investigated the deep structure of the lithosphere and the geodynamic conditions of granitoid magmatism in the Eastern Russia within the borders of the Far Eastern Federal District. The relevance of the work is determined by the need to establish the geotectonic and geodynamic conditions of the granitoids petrogenesis and ore genesis in the Russian sector of the Pacific Ore Belt. The purpose of the article is to study the deep structure of the lithosphere and determine the geodynamic conditions of granitoid magmatism in the East of Russia. The author's data on the magmatism of ore regions, regional granitoids correlations, archive and published State Geological Map data, survey mapping, deep seismic sounding of the earth's crust, gravimetric survey, geothermal exploration, and other geophysical data obtained along geotraverses. The magma-controlling concentric geostructures of the region are distinguished and their deep structure is studied. The connection of plume magmatism with deep structures is traced. The chain of concentric geostructures of Eastern Russia controls the trans-regional zone of leucocratization of the earth's crust with a width of more than 1000 km, which includes the Far Eastern zone of Li-F granites. Magmacontrolling concentric geostructures are concentrated in three granitoid provinces: Novosibirsk-Chukotka, Yano-Kolyma, and Sikhote-Alin. The driving force of geodynamic processes and granitoid magmatism was mantle heat fluxes in the reduced zones of the lithospheric slab. The distribution of slab windows along the Pacific mobile belt's strike determines the location of concentric geostructures and the magnitude of granitoid magmatism in the regional provinces. Mantle diapirs are the cores of granitoid ore-magmatic systems. The location of the most important ore regions of the Eastern Russia in concentric geostructures surrounded by annuli of negative gravity anomalies is the most important regional metallogenic pattern reflecting the correlation between ore content and deep structure of the earth's crust.


Geophysics ◽  
1979 ◽  
Vol 44 (4) ◽  
pp. 730-741 ◽  
Author(s):  
M. Okabe

Complete analytical expressions for the first and second derivatives of the gravitational potential in arbitrary directions due to a homogeneous polyhedral body composed of polygonal facets are developed, by applying the divergence theorem definitively. Not only finite but also infinite rectangular prisms then are treated. The gravity anomalies due to a uniform polygon are similarly described in two dimensions. The magnetic potential due to a uniformly magnetized body is directly derived from the first derivative of the gravitational potential in a given direction. The rule for translating the second derivative of the gravitational potential into the magnetic field component is also described. The necessary procedures for practical computer programming are discussed in detail, in order to avoid singularities and to save computing time.


2016 ◽  
Author(s):  
John Milsom ◽  
Phil Roach ◽  
Chris Toland ◽  
Don Riaroh ◽  
Chris Budden ◽  
...  

ABSTRACT As part of an ongoing exploration effort, approximately 4000 line-km of seismic data have recently been acquired and interpreted within the Comoros Exclusive Economic Zone (EEZ). Magnetic and gravity values were recorded along the seismic lines and have been integrated with pre-existing regional data. The combined data sets provide new constraints on the nature of the crust beneath the West Somali Basin (WSB), which was created when Africa broke away from Gondwanaland and began to move north. Despite the absence of clear sea-floor spreading magnetic anomalies or gravity anomalies defining a fracture zone pattern, the crust beneath the WSB has been generally assumed to be oceanic, based largely on regional reconstructions. However, inappropriate use of regional magnetic data has led to conclusions being drawn that are not supported by evidence. The identification of the exact location of the continent-ocean boundary (COB) is less simple than would at first sight appear and, in particular, recent studies have cast doubt on a direct correlation between the COB and the Davie Fracture Zone (DFZ). The new high-quality reflection seismic data have imaged fault patterns east of the DFZ more consistent with extended continental crust, and the accompanying gravity and magnetic surveys have shown that the crust in this area is considerably thicker than normal oceanic and that linear magnetic anomalies typical of sea-floor spreading are absent. Rifting in the basin was probably initiated in Karoo times but the generation of new oceanic crust may have been delayed until about 154 Ma, when there was a switch in extension direction from NW-SE to N-S. From then until about 120 Ma relative movement between Africa and Madagascar was accommodated by extension in the West Somali and Mozambique basins and transform motion along the DFZ that linked them. A new understanding of the WSB can be achieved by taking note of newly-emerging concepts and new data from adjacent areas. The better-studied Mozambique Basin, where comprehensive recent surveys have revealed an unexpectedly complex spreading history, may provide important analogues for some stages in WSB evolution. At the same time the importance of wide continent-ocean transition zones marked by the presence of hyper-extended continental crust has become widely recognised. We make use of these new insights in explaining the anomalous results from the southern WSB and in assessing the prospectivity of the Comoros EEZ.


Geophysics ◽  
1990 ◽  
Vol 55 (2) ◽  
pp. 218-225 ◽  
Author(s):  
J. Arkani‐Hamed ◽  
W. E. S. Urquhart

Magnetic anomalies of North America are reduced to the pole using a generalized technique which takes into account the variations in the directions of the core field and the magnetization of the crust over North America. The reduced‐to‐the‐pole magnetic anomalies show good correlations with a number of regional tectonic features, such as the Mid‐Continental rift and the collision zones along plate boundaries, which are also apparent in the vertical gravity gradient map of North America. The magnetic anomalies do not, however, show consistent correlation with the vertical gravity gradients, suggesting that magnetic and gravity anomalies do not necessarily arise from common sources.


1975 ◽  
Vol 12 (3) ◽  
pp. 378-394 ◽  
Author(s):  
L. W. Sobczak

Regional and deep structure supported by drill hole, gravity, and seismic evidence is interpreted along five profiles—one across the Mackenzie Delta and four across the continental margin. Isostatic compensation has reduced the gravity effect of most structures but gravity anomalies are still sufficient to outline two major sedimentary basins—one very extensive and thick (>10 km) underlying the continental margin and Mackenzie Delta and the other narrow and shallow east and southeast of the Arctic Coastal Plain. A basement ridge separating these basins along the eastern side of the Arctic Coastal Plain is outlined by a trend of relative gravity highs.An arcuate belt of prominent elliptically-shaped free air gravity highs (peak values >100 mgal) over the continental break outlines an uncompensated region of mass excesses. These mass excesses are explained by pro-grading wedges (>2 km thick) of Quaternary and possibly Tertiary sediments that have displaced seawater and act as a load on the crust rather than by the alternative concepts of an uncompensated ridge or high density material in the basement.


2020 ◽  
Author(s):  
Mohamed Abdrabou ◽  
Maha Abdelazeem ◽  
Mohamed Gobashy

<p>Geophysical data such as gravity data can be inverted to get a subsurface image, which depicts the subsurface distribution of physical property. Consequently, inversion of geophysical data has an effective role for interpreting measured geophysical anomalies in hydrocarbons and mineral applications. Interest about ore deposits exploration and sedimentary basins interpretation is associated with their economic importance. The presence of sedimentary basins gives lower amplitude of gravity anomalies with negative signals, due to the negative density contrast as these sedimentary basins have lower density than that of the neighboring basement rocks. In prospecting ore deposits, studying the spatial distributions of densities in the subsurface is essential of significance.Two dimensional forward modelling strategy can be done via locating the rectangular cells with fixed size directly underneath the location of the observed data points using regular grid discretization. Density vector of the subsurface rectangular cells are obtained via solving the 2D gravity inverse problem by optimizing an objective function (i.e., the differences between observed and inverted residual gravity data sets). In this work, a hybrid algorithm merging a bat (BAT) algorithm with the preconditioned conjugate gradient (PCG) method is suggested as a mean for inverting surface gravity anomalies to obtain the density distribution in the subsurface. Like the hybrid, minimization algorithm has the capability to make use of the advantages of both two techniques. In this hybrid algorithm, the BAT algorithm was utilized to construct an initial solution for the PCG technique. The BAT optimizer acts as a rapid build-up of the model, whereas the second modifies the finer model approximated solution. This modern algorithm was firstly applied on a free-noise synthetic data and to a noisy data with three different levels of random noise, and good results obtained through the inversion. The validity and applicability of our algorithm are applied to real residual gravity anomalies across the San Jacinto graben in southern California, USA, and Sierra Mayor - Sierra Pinta graben, USA and prospecting of the Poshi Cu-Ni deposits, Xinjiang, northwest China. The obtained results are in excellent accordance with those produced by researchers in the published literature.</p><p> </p><p><strong>Keywords: </strong>Gravity data, 2D Inversion, BAT algorithm, Preconditioned Conjugate Gradient, Sedimentary Basins.</p>


2020 ◽  
Author(s):  
Pavel Hejda ◽  
Dana Čápová ◽  
Eva Hudečková ◽  
Vladimír Kolejka

<p>The modern epoch of ground magnetic surveying activity on the Czech territory was started by the Institute of Geophysics by setting up a fundamental network of the 1<sup>st</sup> order in 1957-58. It consists of 199 points and was reoccupied in 1976-78 and 1994-96. The anomaly maps were constructed by subtraction of the IGRF model.</p><p>Extensive aeromagnetic measurements have been performed from 1959 to 1972 by permalloy probe of Soviet provenience. The accuracy of the instrumentation was about (and often above) 10 nT. The second period of airborne survey started in 1976. Thanks to the deployment of proton precession magnetometer, the accuracy improved to ~ 2 nT. Since 2004 the measurements were carried out by caesium magnetometer. The data were digitized, known anthropogenic anomalies were cleared away and data were transformed to the regular grid with step 250 m. The final data file of magnetic anomalies ΔT, administered by the Czech Geological Survey, represents a substantial contribution to the exploration of ore deposits and to the structure geology in general.</p><p>In view of the fact that data file of magnetic anomalies was compiled from data acquired by heterogeneous methods in the course of more than 50 years, our recent study is aimed at looking into the homogeneity of the data by comparison them with ground-based magnetic survey. A simple comparison of the contour maps showed good similarity of the large regional anomalies. For more detailed analysis, the variation of ΔT in the neighbourhood of all points of the fundamental network was inspected and the basic statistic characteristics were computed. Summary results as well as several examples will be presented accordingly as the INSPIRE compliant services and eventually as the user-friendly web map application and made available on the CGS Portal http://mapy.geology.cz/ and on the updated web of the CzechGeo/EPOS consortium www.czechgeo.cz. Incorporating the map into the World Digital Magnetic Anomaly Map (WDMAM – IAGA) is also under consideration. This data will also be interesting for the EPOS.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Tao Yang ◽  
Jintian Gao ◽  
Zuowen Gu ◽  
Baatarkhuu Dagva ◽  
Batsaikhan Tserenpil

Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.


Sign in / Sign up

Export Citation Format

Share Document