scholarly journals Methodology for Testing High-Energy Materials Under Low Temperature Conditions

Author(s):  
Patryk MODRZEJEWSKI ◽  
Jacek JANISZEWSKI

The methodology developed for testing gun propellants at low temperatures according to PN-EN ISO 604:2006 is presented in the paper. Brief characteristics are given of the materials tested and the most important static compression test conditions, such as specimen dimensions, deformation velocity and temperature range for selected propellants, i.e. JA-2 and SC. To verify the methodology developed, preliminary strength tests were performed at selected temperatures (25, 0, -25 and -50°C). Tests were carried out on specimens fabricated by shortening the propellant grain to the dimensions required by the reference standard. The results obtained confirmed the expected strength properties for both propellants (tensile strength and brittleness). Due to its chemical composition, the JA-2 propellant is a material of low brittleness even at -50°C. It does not crack completely and only its yield point increases. The results obtained for the JA-2 propellant were consistent with those published in reference literature. The SC propellant proved to be very brittle even at room temperature. At temperatures below 0°C, it fractures completely after reaching the desired deformation. The results obtained confirm that the adopted strength test conditions and the way the tests were prepared and performed enable acquisition of comparable and reliable results. It can be seen by analysing the results for the JA-2 propellant, which are consistent with the data in the available references. In contrast, the tests on the SC propellant proved the validity of strength tests on this type of material. Brittleness of propellant grains is a very undesirable phenomenon. A change in the combustion surface of low explosives caused by the process of propellant grain fracturing can adversely affect the magnitude and course of the pressure pulse, leading to failure of a cartridge chamber or gun barrel.

Mechanik ◽  
2022 ◽  
Vol 95 (1) ◽  
pp. 12-14
Author(s):  
Mateusz Rudnik

The article presents the results of compressive strength tests of cylindrical samples with a hexagonal cell structure. The samples were made of MED 610 material using the photo-curing technology liquid polymer resins. The compressive strength was estimated on the basis of a static compression test of the printed elements. It has been shown that the PolyJet Matrix 3D printing technology enables the printing models with a thin-walled cell structure, which, while maintaining the appropriate strength properties, can be used in the design and production of certain utility models.


Author(s):  
А.В. Курбатов ◽  
Д.А. Кондрашов ◽  
И.А. Драничников ◽  
Ф.А. Попов

Рассматривается разработанная на АО «ФНПЦ «Алтай» информационно-измерительная система (ИИС), предназначенная для автоматизации сбора и обработки результатов измерений при стендовых испытаниях изделий из высокоэнергетических материалов. Ее основной задачей является многоканальный сбор данных о результатах стендовых испытаний, обработка, документирование и хранение результатов измерений. Показано, что в процессе разработки, производства, доводки и серийного выпуска изделий из высокоэнергетических материалов особо важными являются прочностные испытания, позволяющие оценить работоспособность и технические характеристики, а также сроки хранения и эксплуатации. The paper considers the information and measuring system (IMS) developed at the Altai Federal Research and Production Center JSC, designed to automate the collection and processing of measurement results during bench tests of products made of high-energymaterials. Its main task is multichannel collection of data on the results of bench tests, processing, documentation and storage of measurement results. It is shown that in the process of development, production, fine-tuning and serial production of products made of high-energy materials, strength tests are especially important, which make it possible to assess the performance and technical characteristics, as well as the storage and operation periods.


Author(s):  
A. Korotkikh ◽  
◽  
I. Sorokin ◽  
◽  

The paper presents the results of thermodynamic calculations of the effect of pure boron additives on combustion characteristics of high-energy materials (HEM) based on ammonium perchlorate, ammonium nitrate, active fuel-binder, and powders of aluminum Al, titanium Ti, magnesium Mg, and boron B. The combustion parameters and the equilibrium composition of condensed combustion products (CCPs) of HEM model compositions were obtained with thermodynamic calculation program “Terra.” The compositions of solid propellants with different ratios of metals (Al/B, Ti/B, Mg/B, and Al/Mg/B) were considered. The combustion temperature Tad in a combustion chamber, the vacuum specific impulse J at the nozzle exit, and the mass fraction ma of the CCPs for HEMs were determined.


Author(s):  
A. G. Korotkikh ◽  
◽  
V. A. Arkhipov ◽  
I. V. Sorokin ◽  
E. A. Selikhova ◽  
...  

The paper presents the results of ignition and thermal behavior for samples of high-energy materials (HEM) based on ammonium perchlorate (AP) and ammonium nitrate (AN), active binder and powders of Al, B, AlB2, and TiB2. A CO2 laser with a heat flux density range of 90-200 W/cm2 was used for studies of ignition. The activation energy and characteristics of ignition for the HEM samples were determined. Also, the ignition delay time and the surface temperature of the reaction layer during the heating and ignition for the HEM samples were determined. It was found that the complete replacement of micron-sized aluminum powder by amorphous boron in a HEM sample leads to a considerable decrease in the ignition delay time by a factor of 2.2-2.8 at the same heat flux density due to high chemical activity and the difference in the oxidation mechanisms of boron particles. The use of aluminum diboride in a HEM sample allows one to reduce the ignition delay time of a HEM sample by a factor of 1.7-2.2. The quasi-stationary ignition temperature is the same for the AlB2-based and AlB12-based HEM samples.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 367
Author(s):  
Martyna Murat ◽  
Zahra Gholami ◽  
Josef Šimek ◽  
Daily Rodríguez-Padrón ◽  
José Miguel Hidalgo-Herrador

A great emphasis is placed on searching for efficient sources to produce renewable fuels due to the actual trends in avoiding the use of fossil resources to mitigate the environment’s deterioration. Thus, the use of waste from the food or wood industry for the production of biofuels is widely researched and may contribute to sustainable general development. Rendered fat and Fischer-Tropsch waxes are high-energy materials which could be used for the pyrolysis reaction. Therefore, in this study, the effect of reaction parameters and feedstock composition on the distribution of the pyrolysis products has been examined. The experiments were carried out in a nitrogen atmosphere in a multi-shot pyrolizer instrument equipped with GC-FID. First, the influence of the temperature was examined at 785, 800, and 815 °C. The highest yield to olefins was observed at 815 °C. The effect of triglycerides and paraffins contents (0–100% with 10% ramp) in the feedstock on the product composition was investigated at 815 °C. The gas chromatography analyses revealed that the feedstock composition did not significantly affect the product composition due to the high temperature and the long linear chain structure similarities between the free fatty acids and Fischer-Tropsch waxes.


Sign in / Sign up

Export Citation Format

Share Document