scholarly journals Compressive properties of cell structures manufactured by photo-curing technology liquid polymer resins – Polyjet Matrix

Mechanik ◽  
2022 ◽  
Vol 95 (1) ◽  
pp. 12-14
Author(s):  
Mateusz Rudnik

The article presents the results of compressive strength tests of cylindrical samples with a hexagonal cell structure. The samples were made of MED 610 material using the photo-curing technology liquid polymer resins. The compressive strength was estimated on the basis of a static compression test of the printed elements. It has been shown that the PolyJet Matrix 3D printing technology enables the printing models with a thin-walled cell structure, which, while maintaining the appropriate strength properties, can be used in the design and production of certain utility models.

2015 ◽  
Vol 815 ◽  
pp. 177-181 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
Mukridz Md Mohtar ◽  
Liew Yun Ming ◽  
Muhammad Faheem Mohd Tahir ◽  
Kamarudin Husin ◽  
...  

This paper studies the effect of curing temperature and curing duration to the flood mud based geopolymer on compressive strength properties. Flood mud was used as a raw material for geopolymer and geopolymer samples were synthesized by using sodium silicate and sodium hydroxide 14M solution. These samples were cured at different temperature (100°C, 150°C, 200°C and 250°) for different curing duration (6h, 12h and 24h) respectively. Compressive strength tests were carried out at after 28 days. The compressive strength and SEM analysis of geopolymer products were evaluated. Result showed that the maximum compressive strength was 24 MPa at temperature of 150°C for 24 hours. With increasing ageing day, densification of geopolymer gel was observed.


2020 ◽  
Vol 14 (54) ◽  
pp. 116-127
Author(s):  
Jalal Akbari ◽  
Amirhossein Abed

This paper experimentally investigates the effect of steel and glass fibers on the engineering properties of concrete. To achieve this, 0.3%, 0.6%, and 0.9% by volume fraction of steel and glass fibers are added in concrete mixtures with water-to-cement (W/C) ratios 0.35 and 0.45. For each ratio of water to cement, 21 cubic samples for compressive strength tests, 14 cylindrical samples for tension strength tests, and also 14 prismatic samples for three-point flexural strength tests were prepared. The experimental results show that adding 0.3% to 0.9% % steel fibers for concrete increases simultaneously the compressive, tension, and also flexural strengths in comparison with plain concrete. Adding glass fibers only between 0.3% to 0.6% increases the compressive strength. The results reveal that the best range for reinforcing concrete with steel fiber is 0.3% to 0.9 % and glass fiber is 0.3% to 0.6 % by volume fraction of fiber to improve the engineering strengths concrete. As a rule of thumb, the tension and flexural strengths of concrete could be explained as 8% and 13% of the compressive strength, respectively.


2020 ◽  
Vol 12 (2) ◽  
pp. 269-275
Author(s):  
Hakan Çağlar ◽  
Arzu Çağlar ◽  
Ömer Can

In this study, it was aimed to develop properties of cement paste having standard properties and produce a graphene doped Polyvinyl Alcohol (PVA) and boron-based cement paste in this context. This type of special cement is mixed with PVA as polymer additive material so it can have a higher strength and sufficient elasticity per unit weight. Also, boric acid which can absorb neutrons having poisonous effect in nuclear reactions is added into the cement in order to minimize environmental disaster caused by a nuclear accident. Compressive and bending strengths were measured based on TSE tests of graphene doped PVA and boron-based cement paste. Then, samples were measured by Brunauer-Emmett-Teller Method (BET) and subjected to X-ray Diffraction (XRD). In XRD measurements, crystalline structure was observed in all materials. According to compressive strength tests, as the graphene amount increases compressive strength also increases, however in bending strength tests as the graphene amount increases bending strength decreases. Although the values of bending strength of samples produced decreased with increase of graphene content, these values were found to be above the standard values. In addition to boron, graphene admixture has a significant effect on material with its positive strength properties.


Author(s):  
Patryk MODRZEJEWSKI ◽  
Jacek JANISZEWSKI

The methodology developed for testing gun propellants at low temperatures according to PN-EN ISO 604:2006 is presented in the paper. Brief characteristics are given of the materials tested and the most important static compression test conditions, such as specimen dimensions, deformation velocity and temperature range for selected propellants, i.e. JA-2 and SC. To verify the methodology developed, preliminary strength tests were performed at selected temperatures (25, 0, -25 and -50°C). Tests were carried out on specimens fabricated by shortening the propellant grain to the dimensions required by the reference standard. The results obtained confirmed the expected strength properties for both propellants (tensile strength and brittleness). Due to its chemical composition, the JA-2 propellant is a material of low brittleness even at -50°C. It does not crack completely and only its yield point increases. The results obtained for the JA-2 propellant were consistent with those published in reference literature. The SC propellant proved to be very brittle even at room temperature. At temperatures below 0°C, it fractures completely after reaching the desired deformation. The results obtained confirm that the adopted strength test conditions and the way the tests were prepared and performed enable acquisition of comparable and reliable results. It can be seen by analysing the results for the JA-2 propellant, which are consistent with the data in the available references. In contrast, the tests on the SC propellant proved the validity of strength tests on this type of material. Brittleness of propellant grains is a very undesirable phenomenon. A change in the combustion surface of low explosives caused by the process of propellant grain fracturing can adversely affect the magnitude and course of the pressure pulse, leading to failure of a cartridge chamber or gun barrel.


2019 ◽  
Vol 5 (4) ◽  
pp. 913-921 ◽  
Author(s):  
Azmat Ali Phul ◽  
Muhammad Jaffar Memon ◽  
Syed Naveed Raza Shah ◽  
Abdul Razzaque Sandhu

This paper investigates the compressive strength properties of concrete with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash in concrete by partial replacement of cement. The incremental demand of cement in the construction field is a concern for environmental degradation, in this regard; replacement of cement is carried out with waste materials by using GGBS and Fly Ash. On optimum level of GGBS and Fly Ash was assessed with varied percentage from 0 to 30% for different curing days. Replaced concrete were tested with the slump, compaction factor, Vee-bee and compressive strength. Cement to water ratio was maintained at 0.47 for all mixes. The compressive strength tests were conducted for 3, 7, 14 and 28 days of curing on a M25 grade concrete. The results obtained from the slump, compaction factor, Vee-bee and compressive strength of concrete containing GGBS and Fly Ash was increased as the curing time increases. The workability of replaced concrete improved when slump value achieved 30% as compared to controlled one SF0 and the compressive strength obtained 26.30% improvement at SF9 as compared to SF0. The outcomes indicated that the addition of GGBS and Fly Ash enhances the workability and compressive strength which eventually improved the mechanical properties of concrete.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1298 ◽  
Author(s):  
Emanoil Linul ◽  
Cristina Vălean ◽  
Petrică-Andrei Linul

Unreinforced and reinforced semi-rigid polyurethane (PU) foams were prepared and their compressive behavior was investigated. Aluminum microfibers (AMs) were added to the formulations to investigate their effect on mechanical properties and crush performances of closed-cell semi-rigid PU foams. Physical and mechanical properties of foams, including foam density, quasi-elastic gradient, compressive strength, densification strain, and energy absorption capability, were determined. The quasi-static compression tests were carried out at room temperature on cubic samples with a loading speed of 10 mm/min. Experimental results showed that the elastic properties and compressive strengths of reinforced semi-rigid PU foams were increased by addition of AMs into the foams. This increase in properties (61.81%-compressive strength and 71.29%-energy absorption) was obtained by adding up to 1.5% (of the foam liquid mass) aluminum microfibers. Above this upper limit of 1.5% AMs (e.g., 2% AMs), the compressive behavior changes and the energy absorption increases only by 12.68%; while the strength properties decreases by about 14.58% compared to unreinforced semi-rigid PU foam. The energy absorption performances of AMs reinforced semi-rigid PU foams were also found to be dependent on the percentage of microfiber in the same manner as the elastic and strength properties.


Neutron ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Mohamad Niizar Abdurahman ◽  
Adnan Zainorabidin Kasbi Basri ◽  
Azman Kassim

Peat is considered problematic soil due to its large void ratio, high compressibility and low shear strength. Various ground improvement methods have been developed in recent years to improve peat’s strength properties. Polyurethane grouting is one of the ground improvement methods that is gaining recognition as effective and fast way to stabilize soil. Polyurethane is a lightweight material produced by mixing polyol and isocyanate chemicals. Upon mixing, a polyurethane foam is created which expands up to a few times of its original volume. In this study, the strength characteristics of polyurethane with different mix ratios of polyol to isocyanate were evaluated to determine the optimum ratio suitable to be used to stabilize peat. Polyol to isocyanate ratio of 1:1, 1:1.5, 1:1.2, 1:2.5 and 1:3 were tested in this this research.  The propagation, microstructure and density of polyurethane were investigated. Compressive strength of polyurethane determined using Unconfined Compression Strength test. Polyurethane created with higher ratio of isocyanate bears higher density and compressive strength compared to the polyurethane with lesser quantity of isocyanate. The cell structure of the polyurethane also is smaller with thicker cell walls. However, the curing time consumed by the polyurethane with high ratio of isocyanate is 8 times greater than the normal polyurethane. Thus, polyurethane ratio with fast curing time and high compressive strength was chosen as the optimum mix ratio to be used to stabilize peat.


2012 ◽  
Vol 501 ◽  
pp. 34-38 ◽  
Author(s):  
Kar Keng Lim ◽  
Roslinda Shamsudin ◽  
Muhammad Azmi Abdul Hamid

In this study, paper sludge ash, a waste from pulp and paper industry was used as a filler in fabricating Plaster of Paris/paper sludge ash composites. Various percentage of paper sludge ash was used, namely 1wt.%, 3wt.%, 5wt.% and 7wt.%. The effect of paper sludge ash on the compressive strength of the Plaster of Paris was studied. The mixed powder of paper sludge ash and Plaster of Paris were form into a 6 mm diameter and 12 mm height cylindrical samples. The composites were characterized theirs density where it shows that the density decreased as the amount of paper sludge ash increased. The compressive strength of the composites also decreased from 11.67 MPa without paper sludge ash addition to 0.50 MPa at 7wt.% paper sludge ash. However, the requirement of strength for Plaster of Paris in industry is between 8.96 MPa to 20.68 MPa. From the SEM observation, sample contain higher percentage of paper sludge ash exhibited more porosity. Therefore with the addition of 1wt.% of paper sludge ash into Plaster of Paris can be a promising construction material.


2014 ◽  
Vol 894 ◽  
pp. 45-49 ◽  
Author(s):  
Luisa Pani ◽  
Lorena Francesconi

In this paper an experimental program has been carried out in order to compare compressive strength fcand elastic static modulus Ecof recycled concrete with ultrasonic waves velocity Vp, to establish the possibility of employing nondestructive ultrasonic tests to qualify recycled concrete. 9 mix of concrete with different substitution percentage of recycled aggregates instead of natural ones and 27 cylindrical samples have been made. At first ultrasonic tests have been carried out on cylindrical samples, later elastic static modulus Ecand compressive strength fchave been experimentally evaluated. The dynamic elastic modulus Edhas been determined in function of ultrasonic wave velocity Vp; furthermore the correlations among Ed, Ec, fce Vphave been determined. It has been demonstrated that ultrasonic tests are suitable for evaluating different deformative and resisting concrete performances even when variations are small.


Sign in / Sign up

Export Citation Format

Share Document