scholarly journals Defining Causality in Covid-19 and Google Search Trends in Java, Indonesia Cases: A Retrospective Analysis

2021 ◽  
Vol 4 (2) ◽  
pp. 81-92
Author(s):  
Afrina Andriani br Sebayang ◽  
Enrico Antonius ◽  
Elisabeth Victoria Pravitama ◽  
Jonathan Irianto ◽  
Shannen Widijanto ◽  
...  

The Coronavirus disease 2019 (Covid-19) has led all countries around the world to the unpredicted situation. It is such a crucial to investigate novel approaches in predicting the future behaviour of the outbreak. In this paper, Google trend analysis will be employed to analyse the seek pattern of Covid-19 cases. The first method to investigate the seek information behaviour related to Covid-19 outbreak is using lag-correlation between two time series data per regional data. The second method is used to encounter the cause-effect relation between time series data. We apply statistical methods for causal inference in epidemics. Our focus is on predicting the causal-effect relationship between information-seeking patterns and Google search in the Covid-19 pandemic. We propose the using of Granger Causality method to analyse the causal relation between incidence data and Google Trend Data.

2021 ◽  
Vol 10 (2) ◽  
pp. 112-128
Author(s):  
Septanti Kusuma Dwi Arini ◽  
Farit Mochamad Afendi ◽  
Pika Silvianti

The time series data used is time series data following the LLTM (local linear trend model) model with four different error conditions. These conditions are Clean Data (CD), Symmetric Outliers (SO), Asymmetric Outliers (AO) and Fat-tailed data (FT). The time series data contains symmetric and asymmetric outliers that can affect forecasting. The forecasting method used for the trend data pattern is the Holt smoothing method. The forecasting of the data series when it is spinning using the Holt smoothing method is not good enough so that it requires a handler with the smoothing method of Holt robustness. The Holt robustness smoothing method that is carried out on time series simulation data is better used for the condition of scattered data compared to the Holt smoothing method. This is indicated by the value of evaluating the goodness of the method, namely the value of MAD (Mean Absolute Deviation) produced. The smaller MAD value for CD condition training data is the Holt smoothing method, while the data testing method for Holt and robust Holt smoothing is almost comparable. SO's condition for training data and data testing for smaller MAD values is the smoothing method of robust Holt. The condition of AO for training data and data testing for smaller MAD values is the smoothing method of robust Holt. In addition, the MAD value in FT conditions for training data and data testing found almost comparable results between the two methods.


2012 ◽  
Vol 9 (74) ◽  
pp. 2167-2180 ◽  
Author(s):  
Amber M. Holdsworth ◽  
Nicholas K.-R. Kevlahan ◽  
David J. D. Earn

Incidence of infection time-series data for the childhood diseases measles, chicken pox, rubella and whooping cough are described in the language of multifractals. We explore the potential of using the wavelet transform maximum modulus (WTMM) method to characterize the multiscale structure of the observed time series and of simulated data generated by the stochastic susceptible-exposed-infectious-recovered (SEIR) epidemic model. The singularity spectra of the observed time series suggest that each disease is characterized by a unique multifractal signature, which distinguishes that particular disease from the others. The wavelet scaling functions confirm that the time series of measles, rubella and whooping cough are clearly multifractal, while chicken pox has a more monofractal structure in time. The stochastic SEIR epidemic model is unable to reproduce the qualitative singularity structure of the reported incidence data: it is too smooth and does not appear to have a multifractal singularity structure. The precise reasons for the failure of the SEIR epidemic model to reproduce the correct multiscale structure of the reported incidence data remain unclear.


2021 ◽  
Author(s):  
Meshrif Alruily ◽  
Mohamed Ezz ◽  
Ayman Mohamed Mostafa ◽  
Nacim Yanes ◽  
Mostafa Abbas ◽  
...  

ABSTRACTAccurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources. Due to the exponential spread of the COVID-19 infection worldwide, several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature. To accelerate scientific and public health insights into the spread and impact of COVID-19, Google released the Google COVID-19 search trends symptoms open-access dataset. Our objective is to develop 7 and 14 -day-ahead forecasting models of COVID-19 transmission and mortality in the US using the Google search trends for COVID-19 related symptoms. Specifically, we propose a stacked long short-term memory (SLSTM) architecture for predicting COVID-19 confirmed and death cases using historical time series data combined with auxiliary time series data from the Google COVID-19 search trends symptoms dataset. Considering the SLSTM networks trained using historical data only as the base models, our base models for 7 and 14 -day-ahead forecasting of COVID cases had the mean absolute percentage error (MAPE) values of 6.6% and 8.8%, respectively. On the other side, our proposed models had improved MAPE values of 3.2% and 5.6%, respectively. For 7 and 14 -day-ahead forecasting of COVID-19 deaths, the MAPE values of the base models were 4.8% and 11.4%, while the improved MAPE values of our proposed models were 4.7% and 7.8%, respectively. We found that the Google search trends for “pneumonia,” “shortness of breath,” and “fever” are the most informative search trends for predicting COVID-19 transmission. We also found that the search trends for “hypoxia” and “fever” were the most informative trends for forecasting COVID-19 mortality.


2018 ◽  
Vol 57 (S 01) ◽  
pp. e10-e21 ◽  
Author(s):  
Eric Daza

Summary Background: Many of an individual’s historically recorded personal measurements vary over time, thereby forming a time series (e.g., wearable-device data, self-tracked fitness or nutrition measurements, regularly monitored clinical events or chronic conditions). Statistical analyses of such n-of-1 (i.e., single-subject) observational studies (N1OSs) can be used to discover possible cause-effect relationships to then self-test in an n-of-1 randomized trial (N1RT). However, a principled way of determining how and when to interpret an N1OS association as a causal effect (e.g., as if randomization had occurred) is needed. Objectives: Our goal in this paper is to help bridge the methodological gap between risk-factor discovery and N1RT testing by introducing a basic counterfactual framework for N1OS design and personalized causal analysis. Methods and Results: We introduce and characterize what we call the average period treatment effect (APTE), i.e., the estimand of interest in an N1RT, and build an analytical framework around it that can accommodate autocorrelation and time trends in the outcome, effect carryover from previous treatment periods, and slow onset or decay of the effect. The APTE is loosely defined as a contrast (e.g., difference, ratio) of averages of potential outcomes the individual can theoretically experience under different treatment levels during a given treatment period. To illustrate the utility of our framework for APTE discovery and estimation, two common causal inference methods are specified within the N1OS context. We then apply the framework and methods to search for estimable and interpretable APTEs using six years of the author’s self-tracked weight and exercise data, and report both the preliminary findings and the challenges we faced in conducting N1OS causal discovery. Conclusions: Causal analysis of an individual’s time series data can be facilitated by an N1RT counterfactual framework. However, for inference to be valid, the veracity of certain key assumptions must be assessed critically, and the hypothesized causal models must be interpretable and meaningful.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


Sign in / Sign up

Export Citation Format

Share Document