scholarly journals A Study of The Volume of Air Supplied in Bag-valve-mask Ventilation Performed by A Female Using The One-person Technique: A Comparison of The E-C Technique and The Cheek-holding Technique

2021 ◽  
Vol 41 (0) ◽  
pp. 155-159
Author(s):  
Ami Tanaka ◽  
Misaki Okudaira ◽  
Tomoko Saikawa ◽  
Rina Takamatsu ◽  
Maika Hanabusa ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Dongchoon Uhm ◽  
Ajung Kim

Abstract Background For adequate ventilation during bag-valve-mask ventilation, rescuers should ensure a proper mask seal using the one-handed or two-handed technique. Little is known how much sealing forces of bag-valve-mask are needed for adequate ventilation. This study aimed to explored the effect of the 4-point sealing forces of a bag-valve-mask on tidal volume while using the one-handed technique, focusing on the moderating effect of C length ( C length is the distance from the thumb to index finger in the C shape of in the one-hand EC grip). Methods This was a prospective, descriptive simulation study design. Convenience sample of 125 undergraduate paramedic students from two universities was participated. A self-reported questionnaire was used to collect subject data. Tidal volumes, 4-point sealing forces of the mask, peak pressure, and C length of the C shape in the one-hand EC grip, were measured using the mechanical lung model under a simulated adult respiratory arrest. Hierarchical regression analysis was used to determine the moderating effect of C length on tidal volume in bag-valve-mask ventilation. Results The average C length, peak pressure and tidal volume were 7.54 (± 1.85) cm, 11.62 (± 5.40) cmH2O, and 321.66 (± 135.18) mL, respectively. The average range of the 4-point sealing forces were 0.03–0.69 newton. The apex sealing force was the weakest point among the 4-point sealing forces. Hierarchical regression analysis demonstrated that tidal volume accounted for 62.7% of the variance by C length, peak pressure, and apex sealing force during bag-valve-mask ventilation (F = 9.676, p < .001). C length moderated the effect of apex sealing force and peak pressure on tidal volume. That is, the more peak pressure and apex sealing force, the more the tidal volume, and the longer the C length, the more the tidal volume. Conclusion We developed effective advice that can be adopted in clinical practice without side effects as the first simulation study measuring the 4-point sealing forces during bag-valve-mask ventilation, as well as underpin continuous retraining and assessment that focus on individual physical characteristics, such as C length and bag-valve-mask sealing force.


2010 ◽  
Vol 113 (4) ◽  
pp. 873-879 ◽  
Author(s):  
Aaron M. Joffe ◽  
Scott Hetzel ◽  
Elaine C. Liew

Background Mask ventilation is considered a "basic" skill for airway management. A one-handed "EC-clamp" technique is most often used after induction of anesthesia with a two-handed jaw-thrust technique reserved for difficult cases. Our aim was to directly compare both techniques with the primary outcome of air exchange in the lungs. Methods Forty-two elective surgical patients were mask-ventilated after induction of anesthesia by using a one-handed "EC-clamp" technique and a two-handed jaw-thrust technique during pressure-control ventilation in randomized, crossover fashion. When unresponsive to a jaw thrust, expired tidal volumes were recorded from the expiratory limb of the anesthesia machine each for five consecutive breaths. Inadequate mask ventilation and dead-space ventilation were defined as an average tidal volume less than 4 ml/kg predicted body weight or less than 150 ml/breath, respectively. Differences in minute ventilation and tidal volume between techniques were assessed with the use of a mixed-effects model. Results Patients were (mean ± SD) 56 ± 18 yr old with a body mass index of 30 ± 7.1 kg/m. Minute ventilation was 6.32 ± 3.24 l/min with one hand and 7.95 ± 2.70 l/min with two hands. The tidal volume was 6.80 ± 3.10 ml/kg predicted body weight with one hand and 8.60 ± 2.31 ml/kg predicted body weight with two hands. Improvement with two hands was independent of the order used. Inadequate or dead-space ventilation occurred more frequently during use of the one-handed compared with the two-handed technique (14 vs. 5%; P = 0.013). Conclusion A two-handed jaw-thrust mask technique improves upper airway patency as measured by greater tidal volumes during pressure-controlled ventilation than a one-handed "EC-clamp" technique in the unconscious apneic person.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongchoon Uhm ◽  
Ajung Kim

Abstract Background For adequate ventilation during bag-valve-mask ventilation, rescuers should ensure a proper mask seal using the one-handed or two-handed technique. Little is known about the magnitude of sealing forces of a bag-valve-mask needed for adequate ventilation. This study aimed to explore the effect of the 4-point sealing forces of a bag-valve-mask on tidal volume while using the one-handed technique, focusing on the moderating effect of C length (the distance from the thumb to the index finger in the C shape of the one-hand EC grip). Methods A prospective, descriptive simulation study was conducted. A convenience sample of 125 undergraduate paramedic students from two universities was recruited. A self-reported questionnaire was used to collect subjective variables. Tidal volumes, 4-point sealing forces of the mask, peak pressure, and C length of the C shape in the one-hand EC grip were measured using the mechanical lung model under a simulated adult respiratory arrest. Hierarchical regression analysis was used to determine the moderating effect of C length on tidal volume in bag-valve-mask ventilation. Results The average C length, peak pressure, and tidal volume were 7.54 (± 1.85) cm, 11.62 (± 5.40) cmH2O, and 321.66 (± 135.18) mL, respectively. The average range of the 4-point sealing forces was 0.03–0.69 N. The apex sealing force was the weakest among the 4-point sealing forces. Hierarchical regression analysis demonstrated that tidal volume accounted for 62.7% of the variance by C length, peak pressure, and apex sealing force during bag-valve-mask ventilation (F = 9.676, p < 0.001). C length moderated the effect of the apex sealing force and peak pressure on the tidal volume, meaning the higher the peak pressure and apex sealing force, the more the tidal volume and the longer the C length. Conclusion This first simulation study measuring the 4-point sealing forces during bag-valve-mask ventilation provides effective advice that can be adopted in clinical practice without side effects and underpins the importance of continuous retraining and assessment focused on individual physical characteristics, such as C length and bag-valve-mask sealing forces.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
J.A. Eades ◽  
E. Grünbaum

In the last decade and a half, thin film research, particularly research into problems associated with epitaxy, has developed from a simple empirical process of determining the conditions for epitaxy into a complex analytical and experimental study of the nucleation and growth process on the one hand and a technology of very great importance on the other. During this period the thin films group of the University of Chile has studied the epitaxy of metals on metal and insulating substrates. The development of the group, one of the first research groups in physics to be established in the country, has parallelled the increasing complexity of the field.The elaborate techniques and equipment now needed for research into thin films may be illustrated by considering the plant and facilities of this group as characteristic of a good system for the controlled deposition and study of thin films.


Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Sign in / Sign up

Export Citation Format

Share Document