scholarly journals Trimethylsilyl Cation Affinities to Permethylated Monosaccharides and Simple Crown Ethers in the Gas Phase Using ICR Mass Spectrometry. An Interconnection with FAB Ionization Mechanism.

1994 ◽  
Vol 42 (4) ◽  
pp. 225-235 ◽  
Author(s):  
Masami SAWADA ◽  
Yasuo OKUMURA ◽  
Yoshio TAKAI ◽  
Shigetoshi TAKAHASHI ◽  
Masaaki MISHIMA ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Kiontke ◽  
Mehrzad Roudini ◽  
Susan Billig ◽  
Amarghan Fakhfouri ◽  
Andreas Winkler ◽  
...  

AbstractMass spectrometry coupled to low-temperature plasma ionization (LTPI) allows for immediate and easy analysis of compounds from the surface of a sample at ambient conditions. The efficiency of this process, however, strongly depends on the successful desorption of the analyte from the surface to the gas phase. Whilst conventional sample heating can improve analyte desorption, heating is not desirable with respect to the stability of thermally labile analytes. In this study using aromatic amines as model compounds, we demonstrate that (1) surface acoustic wave nebulization (SAWN) can significantly improve compound desorption for LTPI without heating the sample. Furthermore, (2) SAWN-assisted LTPI shows a response enhancement up to a factor of 8 for polar compounds such as aminophenols and phenylenediamines suggesting a paradigm shift in the ionization mechanism. Additional assets of the new technique demonstrated here are (3) a reduced analyte selectivity (the interquartile range of the response decreased by a factor of 7)—a significant benefit in non-targeted analysis of complex samples—and (4) the possibility for automated online monitoring using an autosampler. Finally, (5) the small size of the microfluidic SAWN-chip enables the implementation of the method into miniaturized, mobile LTPI probes.


1992 ◽  
Vol 21 (12) ◽  
pp. 2439-2442 ◽  
Author(s):  
Masaaki Mishima ◽  
Chul Hyun Kang ◽  
Mizue Fujio ◽  
Yuho Tsuno

Sign in / Sign up

Export Citation Format

Share Document